Probabilistic models for human judgments about uncertainty in intuitive inference tasks

Enllaç permanent

Descripció

  • Resum

    Updating beliefs to maintain coherence with observational evidence is a cornerstone of rationality. This entails the compliance with probabilistic principles which acknowledge that real-world observations are consistent with several possible interpretations. This work presents two novel experimental paradigms and computational analyses of how human participants quantify uncertainty in perceptual inference tasks. Their behavioral responses feature non-trivial patterns of probabilistic inference such as reliability-based belief updating over hierarchical state representations of the environment. Despite characteristic generalization biases, behavior cannot be explained well by alternative heuristic accounts. These results suggest that uncertainty is an integral part of our inferences and that we indeed have the potential to resort to rational inference mechanisms that adhere to probabilistic principles. Furthermore, they appear consistent with ubiquitous representations of uncertainty posited by framework theories such as Bayesian hierarchical modeling and predictive coding.
    Un pilar fundamental de la racionalidad es actualizar las creencias con la finalidad de mantener la coherencia con la evidencia observacional. Esto implica cumplir con principios probabilísticos, los cuales reconocen que las observaciones del mundo real son consistentes con varias interpretaciones posibles. Este estudio presenta dos novedosas pruebas experimentales, así como análisis computacionales, de cómo participantes humanos cuantifican la incertidumbre en tareas de inferencia perceptiva. Sus respuestas conductuales muestran patrones no triviales de inferencia probabilística, tales como la actualización de creencias basadas en la confiabilidad sobre las representaciones jerárquicas del estado del entorno. A pesar de los sesgos característicos de generalización, el comportamiento no puede ser correctamente explicado con descripciones heurísticas alternativas. Estos resultados sugieren que la incertidumbre es una parte integral de nuestras inferencias y que efectivamente tenemos el potencial para recurrir a mecanismos de inferencia racional, los cuales adhieren a principios probabilísticos. Además, dichos resultados son compatibles con la idea de que representaciones de incertidumbre internas son ubicuas, lo cual presuponen teorías generales como Bayesian hierarchical modeling y predictive coding.
    Programa de doctorat en Tecnologies de la Informació i les Comunicacions
  • Col·leccions

  • Mostra el registre complet