Riesgo quirúrgico tras resección pulmonar anatómica en cirugía torácica. Modelo predictivo a partir de una base de datos nacional multicéntrica

Citació

  • Gómez de Antonio D, Crowley Carrasco S, Romero Román A, Royuela A, Sánchez Calle Á, Obiols Fornell C, et al. Riesgo quirúrgico tras resección pulmonar anatómica en cirugía torácica. Modelo predictivo a partir de una base de datos nacional multicéntrica. Arch Bronconeumol. 2022 May; 58(5): 398-405. DOI: 10.1016/j.arbres.2021.01.037

Enllaç permanent

Descripció

  • Resum

    Introduction: the aim of this study was to develop a surgical risk prediction model in patients undergoing anatomic lung resections from the registry of the Spanish Video-Assisted Thoracic Surgery Group (GEVATS). Methods: data were collected from 3,533 patients undergoing anatomic lung resection for any diagnosis between December 20, 2016 and March 20, 2018. We defined a combined outcome variable: death or Clavien Dindo grade IV complication at 90 days after surgery. Univariate and multivariate analyses were performed by logistic regression. Internal validation of the model was performed using resampling techniques. Results: the incidence of the outcome variable was 4.29% (95% CI 3.6-4.9). The variables remaining in the final logistic model were: age, sex, previous lung cancer resection, dyspnea (mMRC), right pneumonectomy, and ppo DLCO. The performance parameters of the model adjusted by resampling were: C-statistic 0.712 (95% CI 0.648-0.750), Brier score 0.042 and bootstrap shrinkage 0.854. Conclusions: the risk prediction model obtained from the GEVATS database is a simple, valid, and reliable model that is a useful tool for establishing the risk of a patient undergoing anatomic lung resection.
  • Mostra el registre complet