Gene expansion shapes genome architecture in the human pathogen lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina)

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Schwartze, Volker U.
  • dc.contributor.author Winter, Sascha
  • dc.contributor.author Shelest, Ekaterina
  • dc.contributor.author Marcet Houben, Marina
  • dc.contributor.author Horn, Fabian
  • dc.contributor.author Wehner, Stefanie
  • dc.contributor.author Linde, Jörg
  • dc.contributor.author Valiante, Vito
  • dc.contributor.author Sammeth, Michael
  • dc.contributor.author Riege, Konstantin
  • dc.contributor.author Nowrousian, Minou
  • dc.contributor.author Kaerger, Kerstin
  • dc.contributor.author Jacobsen, Ilse D.
  • dc.contributor.author Marz, Manja
  • dc.contributor.author Brakhage, Axel A.
  • dc.contributor.author Gabaldón Estevan, Juan Antonio, 1973-
  • dc.contributor.author Böcker, Sebastian
  • dc.contributor.author Voigt, Kerstin
  • dc.date.accessioned 2025-01-14T08:12:37Z
  • dc.date.available 2025-01-14T08:12:37Z
  • dc.date.issued 2014
  • dc.description.abstract Lichtheimia species are the second most important cause of mucormycosis in Europe. To provide broader insights into the molecular basis of the pathogenicity-associated traits of the basal Mucorales, we report the full genome sequence of L. corymbifera and compared it to the genome of Rhizopus oryzae, the most common cause of mucormycosis worldwide. The genome assembly encompasses 33.6 MB and 12,379 protein-coding genes. This study reveals four major differences of the L. corymbifera genome to R. oryzae: (i) the presence of an highly elevated number of gene duplications which are unlike R. oryzae not due to whole genome duplication (WGD), (ii) despite the relatively high incidence of introns, alternative splicing (AS) is not frequently observed for the generation of paralogs and in response to stress, (iii) the content of repetitive elements is strikingly low (<5%), (iv) L. corymbifera is typically haploid. Novel virulence factors were identified which may be involved in the regulation of the adaptation to iron-limitation, e.g. LCor01340.1 encoding a putative siderophore transporter and LCor00410.1 involved in the siderophore metabolism. Genes encoding the transcription factors LCor08192.1 and LCor01236.1, which are similar to GATA type regulators and to calcineurin regulated CRZ1, respectively, indicating an involvement of the calcineurin pathway in the adaption to iron limitation. Genes encoding MADS-box transcription factors are elevated up to 11 copies compared to the 1–4 copies usually found in other fungi. More findings are: (i) lower content of tRNAs, but unique codons in L. corymbifera, (ii) Over 25% of the proteins are apparently specific for L. corymbifera. (iii) L. corymbifera contains only 2/3 of the proteases (known to be essential virulence factors) in comparision to R. oryzae. On the other hand, the number of secreted proteases, however, is roughly twice as high as in R. oryzae.en
  • dc.description.sponsorship TG group is funded in part by a grant from the Spanish Ministry of Science and Innovation (BFU2009-09168). MM group was in part supported by the German Science Foundation (DFG) MA5082/1-1 (KR). MN would like to thank Ulrich Kück for generous support, and the DFG for funding (project NO407/4-1). SB group was in part supported by DFG BO 1910/8-1 (SWi). KV and AAB acknowledge financial support of the Leibniz Institute of Natural Product Research and Infection Biology - Hans Knöll Institute Jena, Germany. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.en
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Schwartze VU, Winter S, Shelest E, Marcet-Houben M, Horn F, Wehner S, et al. Gene expansion shapes genome architecture in the human pathogen lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina). PLoS Genet. 2014 Aug 14;10(8):e1004496. DOI: 10.1371/journal.pgen.1004496
  • dc.identifier.doi http://dx.doi.org/10.1371/journal.pgen.1004496
  • dc.identifier.issn 1553-7390
  • dc.identifier.uri http://hdl.handle.net/10230/69094
  • dc.language.iso eng
  • dc.publisher Public Library of Science (PLoS)
  • dc.relation.ispartof PLOS Genetics . 2014 Aug 14;10(8):e1004496
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/3PN/BFU2009-09168
  • dc.rights © 2014 Schwartze et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.other Fongs -- Expressió gènicaca
  • dc.subject.other Fongs -- Genèticaca
  • dc.subject.other Enzims proteolítics -- Inhibidorsca
  • dc.title Gene expansion shapes genome architecture in the human pathogen lichtheimia corymbifera: an evolutionary genomics analysis in the ancient terrestrial mucorales (Mucoromycotina)
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion