The ctenophore genome and the evolutionary origins of neural systems
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Moroz, Leonid L.ca
- dc.contributor.author Povolotskaya, Inna, 1986-ca
- dc.contributor.author Derelle, Romainca
- dc.contributor.author Kondrashov, Fyodor A., 1979-ca
- dc.contributor.author Kohn, Andrea B.ca
- dc.date.accessioned 2016-05-27T13:10:12Z
- dc.date.available 2016-05-27T13:10:12Z
- dc.date.issued 2014
- dc.description.abstract The origins of neural systems remain unresolved. In contrast to other basal metazoans, ctenophores (comb jellies) have both complex nervous and mesoderm-derived muscular systems. These holoplanktonic predators also have sophisticated ciliated locomotion, behaviour and distinct development. Here we present the draft genome of Pleurobrachia bachei, Pacific sea gooseberry, together with ten other ctenophore transcriptomes, and show that they are remarkably distinct from other animal genomes in their content of neurogenic, immune and developmental genes. Our integrative analyses place Ctenophora as the earliest lineage within Metazoa. This hypothesis is supported by comparative analysis of multiple gene families, including the apparent absence of HOX genes, canonical microRNA machinery, and reduced immune complement in ctenophores. Although two distinct nervous systems are well recognized in ctenophores, many bilaterian neuron-specific genes and genes of 'classical' neurotransmitter pathways either are absent or, if present, are not expressed in neurons. Our metabolomic and physiological data are consistent with the hypothesis that ctenophore neural systems, and possibly muscle specification, evolved independently from those in other animals.ca
- dc.description.sponsorship This work was supported by NSF (NSF-0744649 and NSF CNS-0821622 to L.L.M.; NSF CHE-1111705 to J.V.S.), NIH (1R01GM097502, R01MH097062, R21RR025699 and 5R21DA030118 to L.L.M.; P30 DA018310 to J.V.S.; R01 AG029360 and 1S10RR027052 to E.I.R.), NASA/nNNX13AJ31G (to K.M.H., L.L.M. and K.M.K.), NSERC 458115 and 211598 (J.P.R.), University of Florida Opportunity Funds/McKnight Brain Research and Florida Biodiversity Institute (L.L.M.), Rostock Inc./A.V. Chikunov (E.I.R.), grant from Russian Federation Government 14.B25.31.0033 (Resolution No.220) (E.I.R.). F.A.K., I.S.P. and R.D.were supported by HHMI(55007424),EMBO and MINECO(BFU2012-31329 and Sev-2012-0208). Contributions of AU Marine Biology Program 117 and Molette laboratory 22.
- dc.format.mimetype application/pdfca
- dc.identifier.citation Moroz LL, Kocot KM, Citarella MR, Dosung S, Norekian TP, Povolotskaya IS et al. The ctenophore genome and the evolutionary origins of neural systems. Nature. 2014; 510(7503): 109-114. DOI 10.1038/nature13400ca
- dc.identifier.doi http://dx.doi.org/10.1038/nature13400
- dc.identifier.issn 0028-0836
- dc.identifier.uri http://hdl.handle.net/10230/26770
- dc.language.iso engca
- dc.publisher Nature Publishing Groupca
- dc.relation.ispartof Nature. 2014; 510(7503): 109-114
- dc.relation.projectID info:eu-repo/grantAgreement/ES/3PN/BFU2012-31329
- dc.relation.projectID info:eu-repo/grantAgreement/ES/3PN/Sev-2012-0208
- dc.rights This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported licence. The images or other/nthirdpartymaterialinthisarticleare includedinthearticle’s CreativeCommonslicence, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons licence, users will need toobtain permission from thelicenceholder/nto reproduce the material. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-sa/3.0ca
- dc.rights.accessRights info:eu-repo/semantics/openAccessca
- dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/3.0ca
- dc.subject.other Gensca
- dc.subject.other RNAca
- dc.title The ctenophore genome and the evolutionary origins of neural systemsca
- dc.type info:eu-repo/semantics/articleca
- dc.type.version info:eu-repo/semantics/publishedVersionca