On the behaviour of stochastic heat equations on bounded domains
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Foondun, Mohammud
- dc.contributor.author Nualart, Eulàlia
- dc.date.accessioned 2020-03-20T08:49:04Z
- dc.date.available 2020-03-20T08:49:04Z
- dc.date.issued 2015
- dc.description.abstract Consider the following equation ∂tut(x) = 1 2 ∂xxut(x) + λσ(ut(x))W˙ (t, x) on an interval. Under Dirichlet boundary condition, we show that in the long run, the second moment of the solution grows exponentially fast if λ is large enough. But if λ is small, then the second moment eventually decays exponentially. If we replace the Dirichlet boundary condition by the Neumann one, then the second moment grows exponentially fast no matter what λ is. We also provide various extensions.
- dc.description.sponsorship Research supported in part by the European Union programme FP7-PEOPLE-2012-CIG under grant agreement 333938.
- dc.format.mimetype application/pdf
- dc.identifier.citation Foondun M, Nualart E. On the behaviour of stochastic heat equations on bounded domains. ALEA Lat Am J Probab Math Stat. 2015;12(2):551-71.
- dc.identifier.issn 1980-0436
- dc.identifier.uri http://hdl.handle.net/10230/43972
- dc.language.iso eng
- dc.publisher ALEA
- dc.relation.ispartof ALEA Latin American Journal of Probability and Mathematical Statistics. 2015;12(2):551-71.
- dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/333938
- dc.rights © ALEA. Published at: http://alea.impa.br/english/index_v12.htm
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.subject.keyword Stochastic partial differential equations
- dc.title On the behaviour of stochastic heat equations on bounded domains
- dc.type info:eu-repo/semantics/article
- dc.type.version info:eu-repo/semantics/publishedVersion