Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Mateo, Lidia
  • dc.contributor.author Duran-Frigola, Miquel, 1985-
  • dc.contributor.author Gris-Oliver, Albert
  • dc.contributor.author Palafox, Marta
  • dc.contributor.author Scaltriti, Maurizio
  • dc.contributor.author Razavi, Pedram
  • dc.contributor.author Chandarlapaty, Sarat
  • dc.contributor.author Arribas, Joaquín
  • dc.contributor.author Bellet, Meritxell
  • dc.contributor.author Serra, Violeta
  • dc.contributor.author Aloy, Patrick, 1972-
  • dc.date.accessioned 2022-05-16T10:33:56Z
  • dc.date.available 2022-05-16T10:33:56Z
  • dc.date.issued 2020
  • dc.description.abstract Identification of actionable genomic vulnerabilities is key to precision oncology. Utilizing a large-scale drug screening in patient-derived xenografts, we uncover driver gene alteration connections, derive driver co-occurrence (DCO) networks, and relate these to drug sensitivity. Our collection of 53 drug-response predictors attains an average balanced accuracy of 58% in a cross-validation setting, rising to 66% for a subset of high-confidence predictions. We experimentally validated 12 out of 14 predictions in mice and adapted our strategy to obtain drug-response models from patients' progression-free survival data. Our strategy reveals links between oncogenic alterations, increasing the clinical impact of genomic profiling.
  • dc.description.sponsorship Funding: L.M. is a recipient of an FPI fellowship. P.A. acknowledges the support of the Spanish Ministerio de Economía y Competitividad (BIO2016-77038-R), the European Research Council (SysPharmAD: 614944), and the Generalitat de Catalunya (VEIS 001-P-001). V.S. is a recipient of a Miguel Servet grant from ISCIII (CPII19/00033) and receives funds from AGAUR (2017 SGR 540). The PDX program is supported by a GHD-Pink (FERO foundation) grant to V.S., A.G.-O. and M.P. received a FI-AGAUR and a Juan de la Cierva (MJCI-2015-25412) fellowship, respectively. M.S., P.R., and S.C. acknowledge the support of the NIH grants P30 CA008748, RO1CA190642
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Mateo L, Duran-Frigola M, Gris-Oliver A, Palafox M, Scaltriti M, Razavi P et al. Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns. Genome Med. 2020 Sep 9;12(1):78. DOI:10.1186/s13073-020-00774-x
  • dc.identifier.doi http://dx.doi.org/10.1186/s13073-020-00774-x
  • dc.identifier.issn 1756-994X
  • dc.identifier.uri http://hdl.handle.net/10230/53090
  • dc.language.iso eng
  • dc.publisher BioMed Central
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/614944
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/BIO2016-77038-R
  • dc.rights © Lidia Mateo et al. 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri https://creativecommons.org/licenses/by/4.0/
  • dc.subject.other Càncer -- Tractament
  • dc.subject.other Oncologia
  • dc.subject.other Genòmica
  • dc.title Personalized cancer therapy prioritization based on driver alteration co-occurrence patterns
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion