The chaperonin CCT controls T cell receptor-driven 3D configuration of centrioles

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Martin-Cofreces, Noa
  • dc.contributor.author Chichon, Francisco Javier
  • dc.contributor.author Calvo, Enrique
  • dc.contributor.author Torralba, Daniel
  • dc.contributor.author Bustos Moran, Eugenio
  • dc.contributor.author Dosil, Sara G.
  • dc.contributor.author Rojas-Gomez, Amelia
  • dc.contributor.author Bonzón-Kulichenko, Elena
  • dc.contributor.author Lopez, J. A.
  • dc.contributor.author Oton, Joaquin
  • dc.contributor.author Sorrentino, Andrea
  • dc.contributor.author Zabala, Juan C.
  • dc.contributor.author Vernos, Isabelle, 1959-
  • dc.contributor.author Vazquez, J.
  • dc.contributor.author Valpuesta, José M.
  • dc.contributor.author Sanchez-Madrid, Francisco
  • dc.date.accessioned 2022-06-13T08:55:56Z
  • dc.date.available 2022-06-13T08:55:56Z
  • dc.date.issued 2020
  • dc.description.abstract T lymphocyte activation requires the formation of immune synapses (IS) with antigen-presenting cells. The dynamics of membrane receptors, signaling scaffolds, microfilaments, and microtubules at the IS determine the potency of T cell activation and subsequent immune response. Here, we show that the cytosolic chaperonin CCT (chaperonin-containing TCP1) controls the changes in reciprocal orientation of the centrioles and polarization of the tubulin dynamics induced by T cell receptor in T lymphocytes forming an IS. CCT also controls the mitochondrial ultrastructure and the metabolic status of T cells, regulating the de novo synthesis of tubulin as well as posttranslational modifications (poly-glutamylation, acetylation, Δ1 and Δ2) of αβ-tubulin heterodimers, fine-tuning tubulin dynamics. These changes ultimately determine the function and organization of the centrioles, as shown by three-dimensional reconstruction of resting and stimulated primary T cells using cryo-soft x-ray tomography. Through this mechanism, CCT governs T cell activation and polarity.
  • dc.description.sponsorship Funding: cryo-SXT work was supported by ALBA Synchrotron standard proposals 2015021148 and 2016021638 to F.J.C., N.B.M.-C., and J.M.V. This study was supported by grants SAF2017-82886-R (to F.S.-M.), PID2019-105872GB-I00/AEI/10.13039/501100011033 (AEI/FEDER, UE), BFU2016-75984 (to J.M.V.), and BIO2015-67580-P and PGC2018-097019-B-I00 (to J.V.) from the Spanish Ministry of Economy and Competitiveness (MINECO), grants INFLAMUNE-S2017/BMD-23671 (to F.S.-M.) and P2018/NMT-4389 (to J.M.V.) from the Comunidad de Madrid, ERC-2011-AdG 294340-GENTRIS (to F.S.-M.), a 2019 grant from the Ramón Areces Foundation “Ciencias de la Vida y la Salud” and a 2018 grant from Ayudas Fundación BBVA a Equipos de Investigación Científica (to F.S.-M.), and grants PRB3 (IPT17/0019-ISCIII-SGEFI/ERDF), the Fundació Marató TV3 (grant 122/C/2015), and “La Caixa” Banking Foundation (HR17-00016 to FSM and HR17-00247 to J.V.). D.T. is supported by a PhD fellowship from La Caixa Foundation. Work in the Vernos lab was supported by the grant CSD2006-00023 from the Spanish Ministry of Science and Innovation and grants BFU2012-37163 and BFU2015-68726-P from the Spanish Ministry of Economy and Competitiveness. The CRG acknowledges support of the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa, and the CERCA Programme/Generalitat de Catalunya. CIBER Cardiovascular (Fondo de Investigación Sanitaria del Instituto de Salud Carlos III and co-funding by Fondo Europeo de Desarrollo Regional FEDER). The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the Pro-CNIC Foundation and is a Severo Ochoa Center of Excellence (MINECO award SEV-2015-0505). The Centro Nacional de Biotecnología (CNB) is a Severo Ochoa Center of Excellence (MINECO award SEV 2017-0712)
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Martin-Cofreces NB, Chichon FJ, Calvo E, Torralba D, Bustos-Moran E, Dosil SG et al. The chaperonin CCT controls T cell receptor-driven 3D configuration of centrioles. Sci Adv. 2020 Dec 2;6(49):eabb7242. DOI:10.1126/sciadv.abb7242
  • dc.identifier.doi http://dx.doi.org/10.1126/sciadv.abb7242
  • dc.identifier.issn 2375-2548
  • dc.identifier.uri http://hdl.handle.net/10230/53472
  • dc.language.iso eng
  • dc.publisher American Association for the Advancement of Science (AAAS)
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/294340
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/3PN/BFU2012-37163
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/BIO2015-67580-P
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/BFU2015-68726-P
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/BFU2016-75984
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/SAF2017-82886-R
  • dc.rights © 2020 N. B. Martin-Cofreces et al, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC)
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri https://creativecommons.org/licenses/by-nc/4.0/
  • dc.subject.other Genètica
  • dc.subject.other Cèl·lules T
  • dc.subject.other Sistema immunològic
  • dc.subject.other Xaperonines
  • dc.title The chaperonin CCT controls T cell receptor-driven 3D configuration of centrioles
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion