Effects of exercise training on circulating biomarkers of endothelial function in pulmonary arterial hypertension
Effects of exercise training on circulating biomarkers of endothelial function in pulmonary arterial hypertension
Citació
- Rodríguez-Chiaradía DA, Khilzi K, Blanco I, Rodó-Pin A, Martin-Ontiyuelo C, Herranz Blasco A, Garcia-Lucio J, Molina L, Marco E, Barreiro E, Piccari L, Peinado VI, Garcia AR, Tura-Ceide O, Barberà JA. Effects of exercise training on circulating biomarkers of endothelial function in pulmonary arterial hypertension. Biomedicines. 2023 Jun 25;11(7):1822. DOI: 10.3390/biomedicines11071822
Enllaç permanent
Descripció
Resum
Introduction: In stable patients with pulmonary arterial hypertension (PAH), pulmonary rehabilitation (PR) is an effective, safe and cost-effective non-pharmacological treatment. However, the effects of PR on vascular function have been poorly explored. This study aimed to compare the amounts of circulating progenitor cells (PCs) and endothelial microvesicles (EMVs) in patients with PAH before and after 8 weeks of endurance exercise training as markers of vascular competence. Methods: A prospective study of 10 consecutive patients with PAH that successfully finished a PR program (8 weeks) was carried out before and after this intervention. Levels of circulating PCs defined as CD34+CD45low progenitor cells and levels of EMVs (CD31+ CD42b-) were measured by flow cytometry. The ratio of PCs to EMVs was taken as a measure of the balance between endothelial damage and repair capacity. Results: All patients showed training-induced increases in endurance time (mean change 287 s). After PR, the number of PCs (CD34+CD45low/total lymphocytes) was increased (p < 0.05). In contrast, after training, the level of EMVs (CD31+ CD42b-/total EMVs) was reduced. The ratio of PCs to EMVs was significantly higher after training (p < 0.05). Conclusion: Our study shows, for the first time, that endurance exercise training in patients with stable PAH has a positive effect, promoting potential mechanisms of damage/repair in favor of repair. This effect could contribute to a positive hemodynamic and clinical response.