Analyzing sex imbalance in EGA and dbGaP biological databases: Recommendations for better practices
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Ruiz-Serra, Victoria
- dc.contributor.author Buslón, Nataly
- dc.contributor.author Philippe, Olivier
- dc.contributor.author Saby, Diego
- dc.contributor.author Morales, María
- dc.contributor.author Pontes, Camila
- dc.contributor.author Muñoz Andirkó, Alejandro
- dc.contributor.author Holliday, Gemma L.
- dc.contributor.author Jene, Aina
- dc.contributor.author Moldes, Mauricio
- dc.contributor.author Rambla de Argila, Jordi
- dc.contributor.author Valencia, Alfonso
- dc.contributor.author Rementeria, María José
- dc.contributor.author Cortés, Atia
- dc.contributor.author Cirillo, Davide
- dc.date.accessioned 2025-01-22T07:24:47Z
- dc.date.available 2025-01-22T07:24:47Z
- dc.date.issued 2024
- dc.description.abstract Precision medicine aims at tailoring treatments to individual patient's characteristics. In this regard, recognizing the significance of sex and gender becomes indispensable for meeting the distinct healthcare needs of diverse populations. To this end, continuing a trend of improving data quality observed since 2014, the European Genome-phenome Archive (EGA) established a policy in 2018 that mandates data providers to declare the sex of donor samples, aiming to enhance data accuracy and prevent imbalance in sex classification. We analyzed sex classification imbalance in human data from EGA and the U.S. counterpart, the database of genotypes and phenotypes (dbGaP). Our findings show a significant decrease in samples classified as unknown in EGA, potentially promoting better sex reporting during data collection. Based on our findings, we raise awareness of sample imbalance problems and provide a list of recommendations for enhancing biomedical research practices.
- dc.description.sponsorship The work has been supported by Bioinfo4Women through the project Excelencia Severo Ochoa (ref. CEX2021-001148-S) and the European Commission's Horizon 2020 Program, H2020-SC1-DTH-2018-2020, “iPC - individualizedPaediatricCure” (GA 826121). This work was conceptualized and prototyped during the BioHackathon Europe, organized and funded by the ELIXIR Hub in November 2021 in Barcelona. We thank the organizers for an opportunity to participate in such a productive and collaborative event. The authors would like to acknowledge the initiative Bioinfo4Women, Laura Rodríguez Navas (Spanish National Bioinformatics Institute, INB/ELIXIR-ES and Barcelona Supercomputing Center, BSC), Eva Alloza (Spanish National Bioinformatics Institute, INB/ELIXIR-ES and Barcelona Supercomputing Center, BSC), Francisco Garcia-Garcia (Prince Felipe Research Center, CIPF), Babita Singh (Center for Genomic Regulation, CRG), Ben Busby (DNANexus), and Michael Feolo (dbGaP) and the NCBI dbGaP support team. C.P. is supported by the fellowship Juan de La Cierva - Formación from the Spanish Ministry of Education and Science (ref. FJC2021-046655-I).
- dc.format.mimetype application/pdf
- dc.identifier.citation Ruiz-Serra V, Buslón N, Philippe OR, Saby D, Morales M, Pontes C, et al. Analyzing sex imbalance in EGA and dbGaP biological databases: Recommendations for better practices. iScience. 2024 Sep 23;27(10):110831. DOI: 10.1016/j.isci.2024.110831
- dc.identifier.doi http://dx.doi.org/10.1016/j.isci.2024.110831
- dc.identifier.issn 2589-0042
- dc.identifier.uri http://hdl.handle.net/10230/69233
- dc.language.iso eng
- dc.publisher Elsevier
- dc.relation.ispartof iScience. 2024 Sep 23;27(10):110831
- dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/826121
- dc.rights © 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri http://creativecommons.org/licenses/by/4.0/
- dc.subject.keyword Artificial intelligence
- dc.subject.keyword Genomics
- dc.subject.keyword Human genetics
- dc.title Analyzing sex imbalance in EGA and dbGaP biological databases: Recommendations for better practices
- dc.type info:eu-repo/semantics/article
- dc.type.version info:eu-repo/semantics/publishedVersion