MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones.
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Ugarte Corbalán, Laura de, 1988-ca
- dc.contributor.author Yoskovitz, Guyca
- dc.contributor.author Balcells, Susanaca
- dc.contributor.author Güerri Fernández, Robertoca
- dc.contributor.author Martinez-Diaz, Santosca
- dc.contributor.author Mellibovsky, Leonardoca
- dc.contributor.author Urreizti, Roserca
- dc.contributor.author Nogués Solan, Francesc Xavierca
- dc.contributor.author Grinberg, Danielca
- dc.contributor.author Garcia Giralt, Natàliaca
- dc.contributor.author Díez Pérez, Adolfoca
- dc.date.accessioned 2016-02-10T09:55:36Z
- dc.date.available 2016-02-10T09:55:36Z
- dc.date.issued 2015
- dc.description.abstract BACKGROUND: MicroRNAs (miRNAs) are important regulators of gene expression, with documented roles in bone metabolism and osteoporosis, suggesting potential therapeutic targets. Our aim was to identify miRNAs differentially expressed in fractured vs nonfractured bones. Additionally, we performed a miRNA profiling of primary osteoblasts to assess the origin of these differentially expressed miRNAs. METHODS: Total RNA was extracted from (a) fresh femoral neck trabecular bone from women undergoing hip replacement due to either osteoporotic fracture (OP group, n = 6) or osteoarthritis in the absence of osteoporosis (Control group, n = 6), matching the two groups by age and body mass index, and (b) primary osteoblasts obtained from knee replacement due to osteoarthritis (n = 4). Samples were hybridized to a microRNA array containing more than 1900 miRNAs. Principal component analysis (PCA) plots and heat map hierarchical clustering were performed. For comparison of expression levels, the threshold was set at log fold change > 1.5 and a p-value < 0.05 (corrected for multiple testing). RESULTS: Both PCA and heat map analyses showed that the samples clustered according to the presence or absence of fracture. Overall, 790 and 315 different miRNAs were detected in fresh bone samples and in primary osteoblasts, respectively, 293 of which were common to both groups. A subset of 82 miRNAs was differentially expressed (p < 0.05) between osteoporotic and control osteoarthritic samples. The eight miRNAs with the lowest p-values (and for which a validated miRNA qPCR assay was available) were assayed, and two were confirmed: miR-320a and miR-483-5p. Both were over-expressed in the osteoporotic samples and expressed in primary osteoblasts. miR-320a is known to target CTNNB1 and predicted to regulate RUNX2 and LEPR, while miR-483-5p down-regulates IGF2. We observed a reduction trend for this target gene in the osteoporotic bone. CONCLUSIONS: We identified two osteoblast miRNAs over-expressed in osteoporotic fractures, which opens novel prospects for research and therapy.ca
- dc.description.sponsorship This work was supported by grant FIS PI10/01537 and the Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad (RETICEF) (Carlos III Health Institute, Science and Innovation Ministry), and FEDER funds. Grant SAF2011-25431 and PIB2010AR-00473 (Science and Innovation Ministry), and the support from the Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER, an initiative of ISCIII) are also acknowledged. Grants from the Generalitat de Catalunya (DIUE; 2009 SGR 818, 2009 SGR 971) also supported this work.
- dc.format.mimetype application/pdfca
- dc.identifier.citation Ugarte L de, Yoskovitz G, Balcells S, Güerri-Fernández R, Martinez-Diaz S, Mellibovsky L. et al. MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones. BMC Med Genomics. 2015 Nov 10;8:75. doi: 10.1186/s12920-015-0149-2.ca
- dc.identifier.doi http://dx.doi.org/10.1186/s12920-015-0149-2
- dc.identifier.issn 1755-8794
- dc.identifier.uri http://hdl.handle.net/10230/25763
- dc.language.iso engca
- dc.publisher BioMed Centralca
- dc.relation.ispartof BMC Medical Genomics. 2015 Nov 10;8:75
- dc.rights This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.ca
- dc.rights.accessRights info:eu-repo/semantics/openAccessca
- dc.rights.uri http://creativecommons.org/licenses/by/4.0/ca
- dc.subject.other Osteoporosica
- dc.subject.other Regulació genèticaca
- dc.subject.other Fracturesca
- dc.title MiRNA profiling of whole trabecular bone: identification of osteoporosis-related changes in MiRNAs in human hip bones.ca
- dc.type info:eu-repo/semantics/articleca
- dc.type.version info:eu-repo/semantics/publishedVersionca