Analyzing how context size and symmetry influence word embedding information
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Gabanes Anuncibay, Inés
- dc.date.accessioned 2022-09-14T17:43:30Z
- dc.date.available 2022-09-14T17:43:30Z
- dc.date.issued 2022-09-14
- dc.description Treball de fi de màster en Lingüística Teòrica i Aplicada. Director: Dr. Thomas Brochhagenca
- dc.description.abstract Word embeddings represent word meaning in the form of a vector; however, the encoded information varies depending on the parameters the vector has been trained with. This paper analyzes how two parameters, context size and symmetry, influence word embedding information and aims to find if there exists a single distributional parametrization for capturing semantic similarity as well as relatedness. The models were trained with GloVe with different parametrizations; then, they were quantitatively evaluated through a similarity task, using WordSim-353 (for relatedness) and SimLex-999 (for semantic similarity) as benchmarks. The results show a minimal variation when manipulating some of the analyzed parameters, in particular between symmetric and asymmetric contexts, which leads us to conclude that it is not necessary to train models with large contexts for achieving good performance.en
- dc.format.mimetype application/pdf*
- dc.identifier.uri http://hdl.handle.net/10230/54069
- dc.language.iso engca
- dc.rights Llicència CC Reconeixement-NoComercial-SenseObraDerivada 4.0 Internacional (CC BY-NC-ND 4.0)ca
- dc.rights.accessRights info:eu-repo/semantics/openAccessca
- dc.rights.uri https://creativecommons.org/licenses/by-nc-nd/4.0/ca
- dc.subject.keyword Semanticsen
- dc.subject.keyword Embeddingsen
- dc.subject.keyword Contexten
- dc.subject.keyword Distributionalen
- dc.subject.keyword Similarityen
- dc.subject.keyword Relatednessen
- dc.subject.keyword GloVeen
- dc.subject.keyword WordSim-353en
- dc.subject.keyword SimLex-999en
- dc.title Analyzing how context size and symmetry influence word embedding informationen
- dc.type info:eu-repo/semantics/masterThesisca