Evaluation of patellar contact pressure changes after static versus dynamic medial patellofemoral ligament reconstructions using a finite element model
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author Sanchis-Alfonso, Vicente
- dc.contributor.author Ginovart, Gerard
- dc.contributor.author Alastruey-López, Diego
- dc.contributor.author Montesinos-Berry, Erik
- dc.contributor.author Monllau García, Juan Carlos
- dc.contributor.author Alberich-Bayarri, Angel
- dc.contributor.author Pérez, María Angeles
- dc.date.accessioned 2021-03-19T07:45:15Z
- dc.date.available 2021-03-19T07:45:15Z
- dc.date.issued 2019
- dc.description.abstract Objectives: To evaluate the effect of various medial patellofemoral ligament (MPFL) fixation techniques on patellar pressure compared with the native knee. Methods: A finite element model of the patellofemoral joint consisting of approximately 30,700 nodes and 22,200 elements was created from computed tomography scans of 24 knees with chronic lateral patellar instability. Patellar contact pressures and maximum MPFL graft stress at five positions of flexion (0°, 30°, 60°, 90°, and 120°) were analyzed in three types of MPFL reconstruction (MPFLr): (1) static/anatomic, (2) dynamic, using the adductor magnus tendon (AMT) as the femoral fixation, and (3) dynamic, using the quadriceps tendon as the attachment (medial quadriceps tendon-femoral ligament (MQTFL) reconstruction). Results: In the static/anatomic technique, the patellar contact pressures at 0° and 30° were greater than in the native knee. As in a native knee, the contact pressures at 60°, 90°, and 120° were very low. The maximum MPFL graft stress at 0° and 30° was greater than in a native knee. However, the MPFL graft was loose at 60°, 90°, and 120°, meaning it had no tension. In the dynamic MPFLr using the AMT as a pulley, the patellar contact pressures were like those of a native knee throughout the entire range of motion. However, the maximum stress of the MPFL graft at 0° was less than that of a native ligament. Yet, the maximum MPFL graft stress was greater at 30° than in a native ligament. After 30° of flexion, the MPFL graft loosened, similarly to a native knee. In the dynamic MQTFL reconstruction, the maximum patellar contact pressure was slightly greater than in a normal knee. The maximum stress of the MPFL graft was much greater at 0° and 30° than that of a native MPFL. After 30° of flexion, the MQPFL graft loosened just as in the native knee. Conclusions: The patellar contact pressures after the dynamic MPFLr were like those of the native knee, whereas a static reconstruction resulted in greater pressures, potentially increasing the risk of patellofemoral osteoarthritis in the long term. Therefore, the dynamic MPFLr might be a safer option than a static reconstruction from a biomechanical perspective.
- dc.format.mimetype application/pdf
- dc.identifier.citation Sanchis-Alfonso V, Ginovart G, Alastruey-López D, Montesinos-Berry E, Monllau JC, Alberich-Bayarri A, et al. Evaluation of patellar contact pressure changes after static versus dynamic medial patellofemoral ligament reconstructions using a finite element model. J Clin Med. 2019 Dec 1; 8(12): 2093. DOI: 10.3390/jcm8122093
- dc.identifier.doi http://dx.doi.org/10.3390/jcm8122093
- dc.identifier.issn 2077-0383
- dc.identifier.uri http://hdl.handle.net/10230/46857
- dc.language.iso eng
- dc.publisher MDPI
- dc.rights Copyright © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
- dc.rights.accessRights info:eu-repo/semantics/openAccess
- dc.rights.uri http://creativecommons.org/licenses/by/4.0/
- dc.subject.keyword Finite element model
- dc.subject.keyword MPFL reconstruction
- dc.subject.keyword Patellar cartilage degeneration after MPFL reconstruction
- dc.subject.keyword Patellar contact pressure
- dc.title Evaluation of patellar contact pressure changes after static versus dynamic medial patellofemoral ligament reconstructions using a finite element model
- dc.type info:eu-repo/semantics/article
- dc.type.version info:eu-repo/semantics/publishedVersion