Effects of microtubule length and crowding on active microtubule network organization

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Chew, Wei-Xiang
  • dc.contributor.author Henkin, Gil
  • dc.contributor.author Nédélec, François
  • dc.contributor.author Surrey, Thomas
  • dc.date.accessioned 2023-03-17T07:15:51Z
  • dc.date.available 2023-03-17T07:15:51Z
  • dc.date.issued 2023
  • dc.description.abstract Active filament networks can organize into various dynamic architectures driven by cross-linking motors. Densities and kinetic properties of motors and microtubules have been shown previously to determine active microtubule network self-organization, but the effects of other control parameters are less understood. Using computer simulations, we study here how microtubule lengths and crowding effects determine active network architecture and dynamics. We find that attractive interactions mimicking crowding effects or long microtubules both promote the formation of extensile nematic networks instead of asters. When microtubules are very long and the network is highly connected, a new isotropically motile network state resembling a "gliding mesh" is predicted. Using in vitro reconstitutions, we confirm the existence of this gliding mesh experimentally. These results provide a better understanding of how active microtubule network organization can be controlled, with implications for cell biology and active materials in general.
  • dc.description.sponsorship This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness to the CRG-EMBL partnership, the Centro de Excelencia Severo Ochoa, and the CERCA Program of the Generalitat de Catalunya. W.-X.C. is supported by a Human Frontier Science Program fellowship (HFSP LT000682/2020-C). F.N. is supported by the Gatsby Charitable Foundation (Grant PTAG-024). F.N. and T.S. acknowledge support from the European Research Council (ERC Synergy Grant, Project 951430).
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Chew WX, Henkin G, Nédélec F, Surrey T. Effects of microtubule length and crowding on active microtubule network organization. iScience. 2023 Jan 27;26(2):106063. DOI: 10.1016/j.isci.2023.106063
  • dc.identifier.doi http://dx.doi.org/10.1016/j.isci.2023.106063
  • dc.identifier.issn 2589-0042
  • dc.identifier.uri http://hdl.handle.net/10230/56249
  • dc.language.iso eng
  • dc.publisher Elsevier
  • dc.relation.ispartof iScience. 2023 Jan 27;26(2):106063
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/951430
  • dc.rights © 2023 The Authors. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.keyword Biological sciences
  • dc.subject.keyword Biophysics
  • dc.subject.keyword Cell biology
  • dc.subject.keyword Functional aspects of cell biology
  • dc.title Effects of microtubule length and crowding on active microtubule network organization
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion