Training sound event classifiers using different types of supervision

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Fonseca, Eduardo
  • dc.contributor.other Serra, Xavier
  • dc.contributor.other Font, Frederic
  • dc.contributor.other Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
  • dc.date.accessioned 2024-03-16T02:34:16Z
  • dc.date.available 2024-03-16T02:34:16Z
  • dc.date.issued 2022-01-11T12:52:33Z
  • dc.date.issued 2022-01-11T12:52:33Z
  • dc.date.issued 2021-12-01
  • dc.date.modified 2024-03-15T10:58:01Z
  • dc.description.abstract The automatic recognition of sound events has gained attention in the past few years, motivated by emerging applications in fields such as healthcare, smart homes, or urban planning. When the work for this thesis started, research on sound event classification was mainly focused on supervised learning using small datasets, often carefully annotated with vocabularies limited to specific domains (e.g., urban or domestic). However, such small datasets do not support training classifiers able to recognize hundreds of sound events occurring in our everyday environment, such as kettle whistles, bird tweets, cars passing by, or different types of alarms. At the same time, large amounts of environmental sound data are hosted in websites such as Freesound or YouTube, which can be convenient for training large-vocabulary classifiers, particularly using data-hungry deep learning approaches. To advance the state-of-the-art in sound event classification, this thesis investigates several strands of dataset creation as well as supervised and unsupervised learning to train large-vocabulary sound event classifiers, using different types of supervision in novel and alternative ways. Specifically, we focus on supervised learning using clean and noisy labels, as well as self-supervised representation learning from unlabeled data. The first part of this thesis focuses on the creation of FSD50K, a large-vocabulary dataset with over 100h of audio manually labeled using 200 classes of sound events. We provide a detailed description of the creation process and a comprehensive characterization of the dataset. In addition, we explore architectural modifications to increase shift invariance in CNNs, improving robustness to time/frequency shifts in input spectrograms. In the second part, we focus on training sound event classifiers using noisy labels. First, we propose a dataset that supports the investigation of real label noise. Then, we explore network-agnostic approaches to mitigate the effect of label noise during training, including regularization techniques, noise-robust loss functions, and strategies to reject noisy labeled examples. Further, we develop a teacher-student framework to address the problem of missing labels in sound event datasets. In the third part, we propose algorithms to learn audio representations from unlabeled data. In particular, we develop self-supervised contrastive learning frameworks, where representations are learned by comparing pairs of examples computed via data augmentation and automatic sound separation methods. Finally, we report on the organization of two DCASE Challenge Tasks on automatic audio tagging with noisy labels. By providing data resources as well as state-of-the-art approaches and audio representations, this thesis contributes to the advancement of open sound event research, and to the transition from traditional supervised learning using clean labels to other learning strategies less dependent on costly annotation efforts.
  • dc.description.abstract El interés en el reconocimiento automático de eventos sonoros se ha incrementado en los últimos años, motivado por nuevas aplicaciones en campos como la asistencia médica, smart homes, o urbanismo. Al comienzo de esta tesis, la investigación en clasificación de eventos sonoros se centraba principalmente en aprendizaje supervisado usando datasets pequeños, a menudo anotados cuidadosamente con vocabularios limitados a dominios específicos (como el urbano o el doméstico). Sin embargo, tales datasets no permiten entrenar clasificadores capaces de reconocer los cientos de eventos sonoros que ocurren en nuestro entorno, como silbidos de kettle, sonidos de pájaros, coches pasando, o diferentes alarmas. Al mismo tiempo, websites como Freesound o YouTube albergan grandes cantidades de datos de sonido ambiental, que pueden ser útiles para entrenar clasificadores con un vocabulario más extenso, particularmente utilizando métodos de deep learning que requieren gran cantidad de datos. Para avanzar el estado del arte en la clasificación de eventos sonoros, esta tesis investiga varios aspectos de la creación de datasets, así como de aprendizaje supervisado y no supervisado para entrenar clasificadores de eventos sonoros con un vocabulario extenso, utilizando diferentes tipos de supervisión de manera novedosa y alternativa. En concreto, nos centramos en aprendizaje supervisado usando etiquetas sin ruido y con ruido, así como en aprendizaje de representaciones auto-supervisado a partir de datos no etiquetados. La primera parte de esta tesis se centra en la creación de FSD50K, un dataset con más de 100h de audio etiquetado manualmente usando 200 clases de eventos sonoros. Presentamos una descripción detallada del proceso de creación y una caracterización exhaustiva del dataset. Además, exploramos modificaciones arquitectónicas para aumentar la invariancia frente a desplazamientos en CNNs, mejorando la robustez frente a desplazamientos de tiempo/frecuencia en los espectrogramas de entrada. En la segunda parte, nos centramos en entrenar clasificadores de eventos sonoros usando etiquetas con ruido. Primero, proponemos un dataset que permite la investigación del ruido de etiquetas real. Después, exploramos métodos agnósticos a la arquitectura de red para mitigar el efecto del ruido en las etiquetas durante el entrenamiento, incluyendo técnicas de regularización, funciones de coste robustas al ruido, y estrategias para rechazar ejemplos etiquetados con ruido. Además, desarrollamos un método teacher-student para abordar el problema de las etiquetas ausentes en datasets de eventos sonoros. En la tercera parte, proponemos algoritmos para aprender representaciones de audio a partir de datos sin etiquetar. En particular, desarrollamos métodos de aprendizaje contrastivos auto-supervisados, donde las representaciones se aprenden comparando pares de ejemplos calculados a través de métodos de aumento de datos y separación automática de sonido. Finalmente, reportamos sobre la organización de dos DCASE Challenge Tasks para el tageado automático de audio a partir de etiquetas ruidosas. Mediante la propuesta de datasets, así como de métodos de vanguardia y representaciones de audio, esta tesis contribuye al avance de la investigación abierta sobre eventos sonoros y a la transición del aprendizaje supervisado tradicional utilizando etiquetas sin ruido a otras estrategias de aprendizaje menos dependientes de costosos esfuerzos de anotación.
  • dc.description.abstract Programa de doctorat en Tecnologies de la Informació i les Comunicacions
  • dc.format 276 p.
  • dc.format application/pdf
  • dc.format application/pdf
  • dc.identifier http://hdl.handle.net/10803/673067
  • dc.identifier.uri http://hdl.handle.net/10230/52199
  • dc.language.iso eng
  • dc.publisher Universitat Pompeu Fabra
  • dc.rights L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
  • dc.rights http://creativecommons.org/licenses/by/4.0/
  • dc.rights info:eu-repo/semantics/openAccess
  • dc.source TDX (Tesis Doctorals en Xarxa)
  • dc.subject.keyword Sound event
  • dc.subject.keyword Environmental sound
  • dc.subject.keyword Classification
  • dc.subject.keyword Tagging
  • dc.subject.keyword Supervision
  • dc.subject.keyword Audio dataset
  • dc.subject.keyword Data collection
  • dc.subject.keyword Weak labels
  • dc.subject.keyword Convolutional neural networks
  • dc.subject.keyword Shift invariance
  • dc.subject.keyword Label noise
  • dc.subject.keyword Self-supervision
  • dc.subject.keyword Contrastive learning
  • dc.subject.keyword Audio representation learning
  • dc.subject.keyword Evento sonoro
  • dc.subject.keyword Sonido ambiental
  • dc.subject.keyword Clasificación
  • dc.subject.keyword Supervisión
  • dc.subject.keyword Creación de datasets
  • dc.subject.keyword Ruido de etiquetas
  • dc.subject.keyword Auto-supervisión
  • dc.subject.keyword Aprendizaje contrastivo
  • dc.subject.keyword Aprendizaje de representaciones de audio
  • dc.subject.keyword 62
  • dc.title Training sound event classifiers using different types of supervision
  • dc.type info:eu-repo/semantics/doctoralThesis
  • dc.type info:eu-repo/semantics/publishedVersion

Col·leccions