Characterizing brain mechanisms underlying Neurofeedback and Meditation through whole-brain computational modeling and artificial intelligence

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author De Filippi, Eleonora
  • dc.contributor.other Deco, Gustavo
  • dc.contributor.other Sanchez Fibla, Marti
  • dc.contributor.other Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
  • dc.date.accessioned 2024-10-19T01:36:02Z
  • dc.date.available 2024-10-19T01:36:02Z
  • dc.date.issued 2022-12-09T13:19:31Z
  • dc.date.issued 2022-12-09T13:19:31Z
  • dc.date.issued 2022-11-23
  • dc.date.modified 2024-10-03T03:40:07Z
  • dc.description.abstract En las últimas décadas, un cambio de paradigma en el estudio y el tratamiento de los trastornos cerebrales ha hecho que se preste más atención a nuevas intervenciones terapéuticas. En esta línea, las técnicas de autorregulación, como el Neurofeedback y la meditación, han encontrado amplias aplicaciones para varios trastornos cerebrales debido a sus efectos sobre el comportamiento y la neuroplasticidad cerebral. Sin embargo, los mecanismos cerebrales que subyacen a ambas intervenciones están aún por dilucidar. En esta tesis, utilizamos el modelado computacional de todo el cerebro y el aprendizaje automático para comparar los datos de neuroimagen de los sujetos que se sometieron al entrenamiento de Neurofeedback y los controles, y de los meditadores experimentados frente a los sujetos que no habían practicado la meditación. Nuestros resultados sugieren que los mecanismos cerebrales que subyacen a estas técnicas de autorregulación comparten algunos puntos en común, ya que ambos conducen a cambios localizados en la propagación de la información entre las redes a gran escala implicadas en el procesamiento de la recompensa, el aprendizaje implícito, los procesos autorreferenciales y la conciencia interoceptiva. Además, contribuimos a la investigación en el campo del EEG-Neurofeedback proporcionando un enfoque metodológico para un protocolo personalizado basado en el EEG dirigido a estados emocionales complejos.
  • dc.description.abstract Over the last decades, a paradigm shift in the study and treatment of brain disorders has led to increased attention toward novel therapeutic interventions. In this line, self-regulation techniques, such as Neurofeedback and meditation, have found wide applications for several brain disorders due to their effects on behavior and brain neuroplasticity. However, the brain mechanisms underpinning both interventions have still to be elucidated. In this thesis, we used whole-brain computational modeling and machine-learning to compare neuroimaging data from subjects who underwent Neurofeedback training and controls, and from experienced meditators versus subjects naive to meditation practice. Our results suggest that the brain mechanisms behind these self-regulation techniques share some commonalities, both leading to localized changes in information propagation between large-scale networks involved in reward processing, implicit learning, self-referential processes, and interoceptive awareness. Furthermore, we contributed to research in the field of EEG-Neurofeedback by providing a methodological approach for a personalized EEG-based protocol targeting complex emotional states.
  • dc.description.abstract Programa de doctorat en Tecnologies de la Informació i les Comunicacions
  • dc.format 126 p.
  • dc.format application/pdf
  • dc.identifier http://hdl.handle.net/10803/687224
  • dc.identifier.uri http://hdl.handle.net/10230/55098
  • dc.language.iso eng
  • dc.publisher Universitat Pompeu Fabra
  • dc.rights L'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by/4.0/
  • dc.rights http://creativecommons.org/licenses/by/4.0/
  • dc.rights info:eu-repo/semantics/openAccess
  • dc.source TDX (Tesis Doctorals en Xarxa)
  • dc.subject.keyword Neurofeedback
  • dc.subject.keyword Meditación
  • dc.subject.keyword Técnicas de autorregulación
  • dc.subject.keyword Neurociencia computacional
  • dc.subject.keyword fMRI
  • dc.subject.keyword EEG
  • dc.subject.keyword Conectividad efectiva
  • dc.subject.keyword Modelado de todo el cerebro
  • dc.subject.keyword Aprendizaje automático
  • dc.subject.keyword Selección de características
  • dc.subject.keyword Mecanismos cerebrales
  • dc.subject.keyword Meditation
  • dc.subject.keyword Self-regulation techniques
  • dc.subject.keyword Computational neuroscience
  • dc.subject.keyword Effective connectivity
  • dc.subject.keyword Wholebrain modelling
  • dc.subject.keyword Machine learning
  • dc.subject.keyword Feature selection
  • dc.subject.keyword Brain mechanisms
  • dc.subject.keyword 62
  • dc.title Characterizing brain mechanisms underlying Neurofeedback and Meditation through whole-brain computational modeling and artificial intelligence
  • dc.type info:eu-repo/semantics/doctoralThesis
  • dc.type info:eu-repo/semantics/publishedVersion

Col·leccions