Understanding transcriptional regulation by integrative analysis of transcription factor binding data

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Cheng, Chaoca
  • dc.contributor.author Alexander, Rogerca
  • dc.contributor.author Min, Renqiangca
  • dc.contributor.author Leng, Jingca
  • dc.contributor.author Yip, Kevin Y.ca
  • dc.contributor.author Rozowsky, Joel S.ca
  • dc.contributor.author Yan, Koon-Kiuca
  • dc.contributor.author Dong, Xianjunca
  • dc.contributor.author Djebali, Sarahca
  • dc.contributor.author Ruan, Yijunca
  • dc.contributor.author Davis, Carrie A.ca
  • dc.contributor.author Carninci, Pieroca
  • dc.contributor.author Lassmann, Timoca
  • dc.contributor.author Gingeras, Thomas R.ca
  • dc.contributor.author Guigó Serra, Rodericca
  • dc.contributor.author Birney, Ewanca
  • dc.contributor.author Weng, Zhipingca
  • dc.contributor.author Snyder, Michaelca
  • dc.contributor.author Gerstein, Mark B.ca
  • dc.date.accessioned 2014-07-18T08:38:56Z
  • dc.date.available 2014-07-18T08:38:56Z
  • dc.date.issued 2012ca
  • dc.description.abstract Statistical models have been used to quantify the relationship between gene expression and transcription factor (TF) binding signals. Here we apply the models to the large-scale data generated by the ENCODE project to study transcriptional regulation by TFs. Our results reveal a notable difference in the prediction accuracy of expression levels of transcription start sites (TSSs) captured by different technologies and RNA extraction protocols. In general, the expression levels of TSSs with high CpG content are more predictable than those with low CpG content. For genes with alternative TSSs, the expression levels of downstream TSSs are more predictable than those of the upstream ones. Different TF categories and specific TFs vary substantially in their contributions to predicting expression. Between two cell lines, the differential expression of TSS can be precisely reflected by the difference of TF-binding signals in a quantitative manner, arguing against the conventional on-and-off model of TF binding. Finally, we explore the relationships between TF-binding signals and other chromatin features such as histone modifications and DNase hypersensitivity for determining expression. The models imply that these features regulate transcription in a highly coordinated manner.
  • dc.description.sponsorship This work has been carried out under AL Williams Professorship funds
  • dc.format.mimetype application/pdfca
  • dc.identifier.citation Cheng C, Alexander R, Min R, Leng J, Yip KY, Rozowsky J et al. Understanding transcriptional regulation by integrative analysis of transcription factor binding data. Genome Res. 2012;22(9):1658-67. DOI: 10.1101/gr.136838.111ca
  • dc.identifier.doi http://dx.doi.org/10.1101/gr.136838.111
  • dc.identifier.issn 1088-9051ca
  • dc.identifier.uri http://hdl.handle.net/10230/22638
  • dc.language.iso engca
  • dc.publisher Cold Spring Harbor Laboratory Press (CSHL Press)ca
  • dc.relation.ispartof Genome Research. 2012;22(9):1658-67
  • dc.rights © 2012 Chao Cheng et al. This is an Open Access article distributed under the terms of a Creative Commons License (Attribution-NonCommercial 3.0 Unported License)ca
  • dc.rights.accessRights info:eu-repo/semantics/openAccessca
  • dc.rights.uri http://creativecommons.org/licenses/by-nc/3.0/
  • dc.subject.other Genòmica
  • dc.subject.other Expressió gènica
  • dc.subject.other Transcripció genètica
  • dc.title Understanding transcriptional regulation by integrative analysis of transcription factor binding dataca
  • dc.type info:eu-repo/semantics/articleca
  • dc.type.version info:eu-repo/semantics/publishedVersionca