Ion channels enable electrical communication in bacterial communities

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Prindle, Arthur
  • dc.contributor.author Liu, Jintao
  • dc.contributor.author Asally, Munehiro
  • dc.contributor.author Ly, San
  • dc.contributor.author García Ojalvo, Jordi
  • dc.contributor.author Süel, Gürol M.
  • dc.date.accessioned 2019-01-17T08:44:03Z
  • dc.date.available 2019-01-17T08:44:03Z
  • dc.date.issued 2015
  • dc.description.abstract The study of bacterial ion channels has provided fundamental insights into the structural basis of neuronal signalling; however, the native role of ion channels in bacteria has remained elusive. Here we show that ion channels conduct long-range electrical signals within bacterial biofilm communities through spatially propagating waves of potassium. These waves result from a positive feedback loop, in which a metabolic trigger induces release of intracellular potassium, which in turn depolarizes neighbouring cells. Propagating through the biofilm, this wave of depolarization coordinates metabolic states among cells in the interior and periphery of the biofilm. Deletion of the potassium channel abolishes this response. As predicted by a mathematical model, we further show that spatial propagation can be hindered by specific genetic perturbations to potassium channel gating. Together, these results demonstrate a function for ion channels in bacterial biofilms, and provide a prokaryotic paradigm for active, long-range electrical signalling in cellular communities.
  • dc.description.sponsorship J.G.-O. is supported by the Ministerio de Economia y Competitividad (Spain) and FEDER, under project FIS2012-37655-C02-01, and by the ICREA Academia Programme. This research was funded by the National Institutes of Health, National Institute of General Medical Sciences Grant R01 GM088428 and the National Science Foundation Grant MCB-1450867 50867 (both to G.M.S.). This work was also supported by the San Diego Center for Systems Biology (NIH Grant P50 GM085764)
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM. Ion channels enable electrical communication in bacterial communities. Nature. 2015 Nov 5; 527(7576): 59-63. DOI: 10.1038/nature15709
  • dc.identifier.doi http://dx.doi.org/10.1038/nature15709
  • dc.identifier.issn 0028-0836
  • dc.identifier.uri http://hdl.handle.net/10230/36304
  • dc.language.iso eng
  • dc.publisher Nature Research
  • dc.relation.ispartof Nature. 2015 Nov 5;527(7576):59-63
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/FIS2012-37655-C02-01
  • dc.rights © Springer Nature Publishing AG. Prindle A, Liu J, Asally M, Ly S, Garcia-Ojalvo J, Süel GM. Ion channels enable electrical communication in bacterial communities. Nature. 2015 Nov 5; 527(7576): 59-63. http://dx.doi.org/10.1038/nature15709
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.other Bacillus subtilis
  • dc.subject.other Biofilms
  • dc.subject.other Conductivitat elèctrica
  • dc.subject.other Canals de potassi
  • dc.title Ion channels enable electrical communication in bacterial communities
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/acceptedVersion