Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Zhang-James, Yanli
  • dc.contributor.author Helminen, Emily C.
  • dc.contributor.author Liu, Jinru
  • dc.contributor.author ENIGMA-ADHD Working Group
  • dc.contributor.author Franke, Barbara
  • dc.contributor.author Hoogman, Martine
  • dc.contributor.author Faraone, Stephen V.
  • dc.date.accessioned 2022-07-13T06:30:30Z
  • dc.date.available 2022-07-13T06:30:30Z
  • dc.date.issued 2021
  • dc.description.abstract Attention-deficit/hyperactivity disorder (ADHD) affects 5% of children world-wide. Of these, two-thirds continue to have impairing symptoms of ADHD into adulthood. Although a large literature implicates structural brain differences of the disorder, it is not clear if adults with ADHD have similar neuroanatomical differences as those seen in children with recent reports from the large ENIGMA-ADHD consortium finding structural differences for children but not for adults. This paper uses deep learning neural network classification models to determine if there are neuroanatomical changes in the brains of children with ADHD that are also observed for adult ADHD, and vice versa. We found that structural MRI data can significantly separate ADHD from control participants for both children and adults. Consistent with the prior reports from ENIGMA-ADHD, prediction performance and effect sizes were better for the child than the adult samples. The model trained on adult samples significantly predicted ADHD in the child sample, suggesting that our model learned anatomical features that are common to ADHD in childhood and adulthood. These results support the continuity of ADHD's brain differences from childhood to adulthood. In addition, our work demonstrates a novel use of neural network classification models to test hypotheses about developmental continuity.
  • dc.description.sponsorship Dr. Faraone is supported by the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 602805, the European Union’s Horizon 2020 research and innovation programme under grant agreement nos. 667302 & 728018, and NIMH grants 5R01MH101519 and U01 MH109536-01. Dr. Franke is supported by a personal Vici grant (016-130-669) and Dr. Hoogman from a personal Veni grant (91619115), both from the Netherlands Organization for Scientific Research (NWO). The ENIGMA Working Group gratefully acknowledges support from the NIH Big Data to Knowledge (BD2K) award (U54 EB020403 to Paul Thompson). We thank Margaret Mariano and Patricia Forken for administrative assistance and proofreading the manuscript.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Zhang-James Y, Helminen EC, Liu J; ENIGMA-ADHD Working Group, Franke B, Hoogman M,et al. Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis. Transl Psychiatry. 2021 Feb 1; 11(1): 82. DOI: 10.1038/s41398-021-01201-4
  • dc.identifier.doi http://dx.doi.org/10.1038/s41398-021-01201-4
  • dc.identifier.issn 2158-3188
  • dc.identifier.uri http://hdl.handle.net/10230/53726
  • dc.language.iso eng
  • dc.publisher Nature Research
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/602805
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/667302
  • dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/728018
  • dc.rights s This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.keyword Adolescent
  • dc.subject.keyword Attention deficit disorder with hyperactivity
  • dc.subject.keyword Brain
  • dc.subject.keyword Child
  • dc.subject.keyword Machine learning
  • dc.subject.keyword Magnetic Resonance Imaging
  • dc.title Evidence for similar structural brain anomalies in youth and adult attention-deficit/hyperactivity disorder: a machine learning analysis
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion