IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Galera Laporta, Letícia, 1985-
  • dc.contributor.author Comerci, Colin J.
  • dc.contributor.author García Ojalvo, Jordi
  • dc.contributor.author Süel, Gürol M.
  • dc.date.accessioned 2022-01-26T07:34:17Z
  • dc.date.issued 2021
  • dc.description.abstract Metal ions are essential for life and represent the second most abundant constituent (after water) of any living cell. While the biological importance of inorganic ions has been appreciated for over a century, we are far from a comprehensive understanding of the functional roles that ions play in cells and organisms. In particular, recent advances are challenging the traditional view that cells maintain constant levels of ion concentrations (ion homeostasis). In fact, the ionic composition (metallome) of cells appears to be purposefully dynamic. The scientific journey that started over 60 years ago with the seminal work by Hodgkin and Huxley on action potentials in neurons is far from reaching its end. New evidence is uncovering how changes in ionic composition regulate unexpected cellular functions and physiology, especially in bacteria, thereby hinting at the evolutionary origins of the dynamic metallome. It is an exciting time for this field of biology, which we discuss and refer to here as IonoBiology.
  • dc.description.sponsorship We acknowledge Katherine Süel and Steve Lockless for helpful discussions. Molecular graphics and analyses performed with UCSF Chimera, developed by the Resource for Biocomputing, Visualization, and Informatics at the University of California, San Francisco, with support from NIH P41-GM103311. J.G.O. was supported by the Spanish Ministry of Science and Innovation and FEDER, under projects FIS2017-92551-EXP and PGC2018-101251-B-I00, by the “Maria de Maeztu” Programme for Units of Excellence in R\&D (grant CEX2018-000792-M), and by the Generalitat de Catalunya (ICREA Academia programme). G.M.S acknowledges funding from NIH/NIGMS R35 GM139645, NIH/NIGMS R01 GM121888, and Howard Hughes Medical Institute – Simons Foundation Faculty Scholar.
  • dc.format.mimetype application/pdf
  • dc.identifier.citation Galera-Laporta L, Comerci CJ, Garcia-Ojalvo J, Süel GM. IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria. Cell Syst. 2021;12(6):497-508. DOI: 10.1016/j.cels.2021.04.011
  • dc.identifier.doi http://dx.doi.org/10.1016/j.cels.2021.04.011
  • dc.identifier.issn 2405-4712
  • dc.identifier.uri http://hdl.handle.net/10230/52327
  • dc.language.iso eng
  • dc.publisher Elsevier
  • dc.relation.ispartof Cell Syst. 2021;12(6):497-508
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/FIS2017-92551-EXP
  • dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PGC2018-101251-B-I00
  • dc.rights © Elsevier http://dx.doi.org/10.1016/j.cels.2021.04.011
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.subject.keyword Bacteria
  • dc.subject.keyword Biofilms
  • dc.subject.keyword Ion flux
  • dc.subject.keyword Ions
  • dc.subject.keyword Membrane potential
  • dc.subject.keyword Metallome
  • dc.title IonoBiology: The functional dynamics of the intracellular metallome, with lessons from bacteria
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/acceptedVersion