Prediction of non-muscle invasive bladder cancer outcomes assessed by innovative multimarker prognostic models.
Mostra el registre complet Registre parcial de l'ítem
- dc.contributor.author López De Maturana, Evangelinaca
- dc.contributor.author Picornell, Antonica
- dc.contributor.author Masson-Lecomte, Alexandraca
- dc.contributor.author Kogevinas, Manolisca
- dc.contributor.author Márquez, Mirarica
- dc.contributor.author Carrato, Alfredoca
- dc.contributor.author Tardón, Adoninaca
- dc.contributor.author Lloreta, Josep, 1958-ca
- dc.contributor.author García Closas, Montserratca
- dc.contributor.author Silverman, Debra T.ca
- dc.contributor.author Rothman, Nathanielca
- dc.contributor.author Chanock, Stephen J.ca
- dc.contributor.author Real, Francisco X.ca
- dc.contributor.author Goddard, M. E.ca
- dc.contributor.author Malats i Riera, Núriaca
- dc.contributor.author SBC/EPICURO Study Investigatorsca
- dc.date.accessioned 2016-06-29T11:45:15Z
- dc.date.available 2016-06-29T11:45:15Z
- dc.date.issued 2016
- dc.description.abstract BACKGROUND: We adapted Bayesian statistical learning strategies to the prognosis field to investigate if genome-wide common SNP improve the prediction ability of clinico-pathological prognosticators and applied it to non-muscle invasive bladder cancer (NMIBC) patients. METHODS: Adapted Bayesian sequential threshold models in combination with LASSO were applied to consider the time-to-event and the censoring nature of data. We studied 822 NMIBC patients followed-up >10 years. The study outcomes were time-to-first-recurrence and time-to-progression. The predictive ability of the models including up to 171,304 SNP and/or 6 clinico-pathological prognosticators was evaluated using AUC-ROC and determination coefficient. RESULTS: Clinico-pathological prognosticators explained a larger proportion of the time-to-first-recurrence (3.1 %) and time-to-progression (5.4 %) phenotypic variances than SNPs (1 and 0.01 %, respectively). Adding SNPs to the clinico-pathological-parameters model slightly improved the prediction of time-to-first-recurrence (up to 4 %). The prediction of time-to-progression using both clinico-pathological prognosticators and SNP did not improve. Heritability (ĥ (2)) of both outcomes was <1 % in NMIBC. CONCLUSIONS: We adapted a Bayesian statistical learning method to deal with a large number of parameters in prognostic studies. Common SNPs showed a limited role in predicting NMIBC outcomes yielding a very low heritability for both outcomes. We report for the first time a heritability estimate for a disease outcome. Our method can be extended to other disease models.ca
- dc.description.sponsorship The work was partially supported by Red Temática de Investigación Cooperativa en Cáncer (#RD12/0036/0050), Fondo de Investigaciones Sanitarias (FIS), Instituto de Salud Carlos III, (Grant numbers #PI00–0745, #PI05–1436, and #PI06–1614), and Asociación Española Contra el Cáncer (AECC), Spain; the Intramural Research Program of the Division of Cancer Epidemiology and Genetics, National Cancer Institute, USA (Contract NCI NO2-CP-11015); and EU-FP7-HEALTH-F2–2008–201663-UROMOL and EU-7FP-HEALTH-TransBioBC #601933. ELM was funded by a Sara Borrell fellowship, Instituto de Salud Carlos III, Spain; and AML by a fellowship of the European Urological Scholarship Program for Research (EUSP Scholarship S-01–2013).
- dc.format.mimetype application/pdfca
- dc.identifier.citation López de Maturana E, Picornell A, Masson-Lecomte A, Kogevinas M, Márquez M, Carrato A. et al. Prediction of non-muscle invasive bladder cancer outcomes assessed by innovative multimarker prognostic models. BMC Cancer. 2016 Jun 3;16(1):351. doi: 10.1186/s12885-016-2361-7ca
- dc.identifier.doi http://dx.doi.org/10.1186/s12885-016-2361-7
- dc.identifier.issn 1471-2407
- dc.identifier.uri http://hdl.handle.net/10230/26986
- dc.language.iso engca
- dc.publisher BioMed Centralca
- dc.relation.ispartof BMC Cancer. 2016 Jun 3;16(1):351
- dc.relation.ispartof BMC Cancer. 2016 Jun 3;16(1):351
- dc.relation.projectID info:eu-repo/grantAgreement/EC/FP7/201663
- dc.rights © 2016 de Maturana et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.ca
- dc.rights.accessRights info:eu-repo/semantics/openAccessca
- dc.rights.uri https://creativecommons.org/licenses/by/4.0/ca
- dc.subject.keyword Multimarker models
- dc.subject.keyword Bayesian statistical learning method
- dc.subject.keyword Bayesian regression
- dc.subject.keyword Bayesian LASSO
- dc.subject.keyword AUC-ROC
- dc.subject.keyword Determination coefficient
- dc.subject.keyword Heritability
- dc.subject.keyword Bladder cancer outcome
- dc.subject.keyword Prognosis
- dc.subject.keyword Recurrence
- dc.subject.keyword Progression
- dc.subject.keyword Genome-wide common SNP
- dc.subject.keyword Illumina Infinium HumanHap 1 M array
- dc.subject.keyword Predictive ability
- dc.title Prediction of non-muscle invasive bladder cancer outcomes assessed by innovative multimarker prognostic models.ca
- dc.type info:eu-repo/semantics/articleca
- dc.type.version info:eu-repo/semantics/publishedVersionca