Teleconsultations between patients and healthcare professionals in primary care in Catalonia: the evaluation of text classification algorithms using supervised machine learning

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author López Seguí, Francesc, 1991-
  • dc.contributor.author Aguilar, Ricardo Ander Egg
  • dc.contributor.author De Maetzu, Gabriel
  • dc.contributor.author García-Altés, Anna
  • dc.contributor.author García Cuyàs, Francesc
  • dc.contributor.author Walsh Capdevila, Sandra, 1991-
  • dc.contributor.author Sagarra Castro, Marta
  • dc.contributor.author Vidal Alaball, Josep
  • dc.date.accessioned 2021-02-15T12:38:29Z
  • dc.date.available 2021-02-15T12:38:29Z
  • dc.date.issued 2020
  • dc.description.abstract Background: The primary care service in Catalonia has operated an asynchronous teleconsulting service between GPs and patients since 2015 (eConsulta), which has generated some 500,000 messages. New developments in big data analysis tools, particularly those involving natural language, can be used to accurately and systematically evaluate the impact of the service. Objective: The study was intended to assess the predictive potential of eConsulta messages through di erent combinations of vector representation of text and machine learning algorithms and to evaluate their performance. Methodology: Twenty machine learning algorithms (based on five types of algorithms and four text representation techniques) were trained using a sample of 3559 messages (169,102 words) corresponding to 2268 teleconsultations (1.57 messages per teleconsultation) in order to predict the three variables of interest (avoiding the need for a face-to-face visit, increased demand and type of use of the teleconsultation). The performance of the various combinations was measured in terms of precision, sensitivity, F-value and the ROC curve. Results: The best-trained algorithms are generally e ective, proving themselves to be more robust when approximating the two binary variables “avoiding the need of a face-to-face visit” and “increased demand” (precision = 0.98 and 0.97, respectively) rather than the variable “type of query” (precision = 0.48). Conclusion: To the best of our knowledge, this study is the first to investigate a machine learning strategy for text classification using primary care teleconsultation datasets. The study illustrates the possible capacities of text analysis using artificial intelligence. The development of a robust text classification tool could be feasible by validating it with more data, making it potentially more useful for decision support for health professionals.en
  • dc.format.mimetype application/pdf
  • dc.identifier.citation López Seguí F, Aguilar RAE, de Maeztu G, García-Altés A, García Cuyàs F, Walsh S, Sagarra Castro M, Vidal-Alaball J. Teleconsultations between patients and healthcare professionals in primary care in Catalonia: the evaluation of text classification algorithms using supervised machine learning. Int J Environ Res Public Health. 2020 Feb;17:1093. DOI: 10.3390/ijerph17031093
  • dc.identifier.doi http://dx.doi.org/10.3390/ijerph17031093
  • dc.identifier.issn 1661-7827
  • dc.identifier.uri http://hdl.handle.net/10230/46481
  • dc.language.iso eng
  • dc.publisher MDPI
  • dc.relation.ispartof International journal of environmental research and public health. 2020 Feb;17:1093
  • dc.rights © 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by/4.0/
  • dc.subject.keyword Machine learningen
  • dc.subject.keyword Teleconsultationen
  • dc.subject.keyword Primary careen
  • dc.subject.keyword Remote consultationen
  • dc.title Teleconsultations between patients and healthcare professionals in primary care in Catalonia: the evaluation of text classification algorithms using supervised machine learning
  • dc.type info:eu-repo/semantics/article
  • dc.type.version info:eu-repo/semantics/publishedVersion