Welcome to the UPF Digital Repository

A computational pipeline to learn gene expression predictive models from epigenetic information at enhancers or promoters

Show simple item record

dc.contributor.author González Ramírez, Mar, 1991-
dc.contributor.author Blanco, Enrique
dc.contributor.author Di Croce, Luciano
dc.date.accessioned 2023-03-09T07:22:09Z
dc.date.available 2023-03-09T07:22:09Z
dc.date.issued 2023
dc.identifier.citation González-Ramírez M, Blanco E, Di Croce L. A computational pipeline to learn gene expression predictive models from epigenetic information at enhancers or promoters. STAR Protocols. 2023 Mar 17;4(1):101948. DOI: 10.1016/j.xpro.2022.101948
dc.identifier.issn 2666-1667
dc.identifier.uri http://hdl.handle.net/10230/56114
dc.description.abstract Here, we present a computational pipeline to obtain quantitative models that characterize the relationship of gene expression with the epigenetic marking at enhancers or promoters in mouse embryonic stem cells. Our protocol consists of (i) generating predictive models of gene expression from epigenetic information (such as histone modification ChIP-seq) at enhancers or promoters and (ii) assessing the performance of these predictive models. This protocol could be applied to other biological scenarios or other types of epigenetic data. For complete details on the use and execution of this protocol, please refer to Gonzalez-Ramirez et al. (2021).1.
dc.description.sponsorship The work in the Di Croce laboratory is supported by grants from “la Caixa” Foundation (HR20-00411), the Spanish Ministry of Science and Innovation (PID2019-108322GB-100), “Fundación Vencer El Cancer” (VEC), and the European Regional Development Fund (FEDER) and from AGAUR. We acknowledge support from the Spanish Ministry of Science and Innovation to the EMBL partnership, the Centro de Excelencia Severo Ochoa, and the CERCA Programme/Generalitat de Catalunya.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Elsevier
dc.relation.ispartof STAR Protocols. 2023 Mar 17;4(1):101948
dc.rights © 2022 The Author(s). This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.title A computational pipeline to learn gene expression predictive models from epigenetic information at enhancers or promoters
dc.type info:eu-repo/semantics/article
dc.identifier.doi http://dx.doi.org/10.1016/j.xpro.2022.101948
dc.subject.keyword Bioinformatics
dc.subject.keyword Cell differentiation
dc.subject.keyword Genomics
dc.subject.keyword Stem cells
dc.relation.projectID info:eu-repo/grantAgreement/ES/2PE/PID2019-108322GB-100
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/publishedVersion

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

Compliant to Partaking