Interpreting a morphogen gradient into a single stripe of gene-expression is a fundamental unit of patterning in early embryogenesis. From both experimental data and computational studies the feed-forward motifs stand out as minimal networks capable of this patterning function. Positive feedback within gene networks has been hypothesised to enhance the sharpness and precision of gene-expression borders, however a systematic analysis has not yet been reported. Here we set out to assess this hypothesis, ...
Interpreting a morphogen gradient into a single stripe of gene-expression is a fundamental unit of patterning in early embryogenesis. From both experimental data and computational studies the feed-forward motifs stand out as minimal networks capable of this patterning function. Positive feedback within gene networks has been hypothesised to enhance the sharpness and precision of gene-expression borders, however a systematic analysis has not yet been reported. Here we set out to assess this hypothesis, and find an unexpected result. The addition of positive-feedback can have different effects on two different designs of feed-forward motif– it increases the parametric robustness of one design, while being neutral or detrimental to the other. These results shed light on the abundance of the former motif and especially of mutual-inhibition positive feedback in developmental networks.
+