The isometric logratio transformation in compositional data analysis: a practical evaluation

Mostra el registre complet Registre parcial de l'ítem

  • dc.contributor.author Greenacre, Michael
  • dc.contributor.author Grunsky, Eric
  • dc.contributor.other Universitat Pompeu Fabra. Departament d'Economia i Empresa
  • dc.date.accessioned 2020-05-25T09:26:51Z
  • dc.date.available 2020-05-25T09:26:51Z
  • dc.date.issued 2019-01-02
  • dc.date.modified 2020-05-25T09:25:45Z
  • dc.description.abstract The isometric logratio transformation has been promoted by several authors as the theoretically correct way to contrast groups of parts in a compositional data set. But this transformation has only attractive theoretical properties, the practical benefits of which are questionable. A simple counter-example demonstrates the dangers of using the isometric logratio as a univariate response variable in practice. The study is then extended to a real geochemical data set, where the practical value of isometric logratios is further investigated. When groups of parts are required in practical applications, preferably based on substantive knowledge, it is demonstrated that logratios of amalgamations serve as a simpler, more intuitive and more interpretable alternative to isometric logratios. A reduced set of simple logratios of pairs of parts, possibly involving prescribed amalgamations, is adequate in accounting for the variance in a compositional data set, and highlights which parts are driving the data structure.
  • dc.format.mimetype application/pdf*
  • dc.identifier https://econ-papers.upf.edu/ca/paper.php?id=1627
  • dc.identifier.citation
  • dc.identifier.uri http://hdl.handle.net/10230/44704
  • dc.language.iso eng
  • dc.relation.ispartofseries Economics and Business Working Papers Series; 1627
  • dc.rights L'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons
  • dc.rights.accessRights info:eu-repo/semantics/openAccess
  • dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/es/
  • dc.subject.keyword amalgamation
  • dc.subject.keyword compositional data geometric mean
  • dc.subject.keyword logratio transformation
  • dc.subject.keyword
  • dc.subject.keyword logratio analysis
  • dc.subject.keyword logratio distance
  • dc.subject.keyword multivariate analysis
  • dc.subject.keyword ratios
  • dc.subject.keyword subcompositional coherence
  • dc.subject.keyword univariate statistics.
  • dc.subject.keyword Statistics, Econometrics and Quantitative Methods
  • dc.title The isometric logratio transformation in compositional data analysis: a practical evaluation
  • dc.title.alternative
  • dc.type info:eu-repo/semantics/workingPaper