Decision making in uncertain and changing environments
Decision making in uncertain and changing environments
Enllaç permanent
Descripció
Resum
We consider an agent who has to repeatedly make choices in an uncertain and changing environment, who has full information of the past, who discounts future payoffs, but who has no prior. We provide a learning algorithm that performs almost as well as the best of a given finite number of experts or benchmark strategies and does so at any point in time, provided the agent is sufficiently patient. The key is to find the appropriate degree of forgetting distant past. Standard learning algorithms that treat recent and distant past equally do not have the sequential epsilon optimality property.Director i departament
Col·leccions
Mostra el registre complet