dc.contributor.author |
Penfold, Kai |
dc.contributor.author |
Ravinet, Raphael |
dc.date.accessioned |
2024-08-27T11:53:30Z |
dc.date.available |
2024-08-27T11:53:30Z |
dc.date.issued |
2024-06 |
dc.identifier.uri |
http://hdl.handle.net/10230/60931 |
dc.description |
Treball fi de màster de: Master's Degree in Economics and Finance. Finance Programme. Curs 2023-2024 |
dc.description |
Director: Christian Brownlees |
dc.description.abstract |
It has been well documented in the literature that the inclusion of realized measures into GARCH models can lead to both statistical and economic gains through improved forecasting performance. In this paper, we employ the Realized HAR-GARCH model of Huang et al. (2016) to forecast multi-step-ahead financial tail risk. Specifically, we assess the model’s performance and whether the resulting Value-at-Risk (VaR) and Expected Shortfall (ES) forecasts are well-specified. We also consider the economic significance of the model’s accuracy through a hedging strategy exercise. Our analysis covers the period from October 10, 2003, to March 28, 2024, including the COVID-19 pandemic.
The Realized HAR-GARCH model is found to outperform the Realized GARCH model in volatility forecasting, especially over longer horizons. However, we find this does not directly translate into superior VaR and ES forecasting performance. |
dc.description.abstract |
La inclusión de medidas ya realizadas a modelos GARCH y su impacto favorable sobre su capacidad de pronóstico es un hecho bien documentado en la literatura existente. En este artículo, aplicamos el modelo de Realized HAR-GARCH de Huang et al. (2016) para pronosticar riesgos financieros a la baja. En este ejercicio medimos la precisión del modelo y si las consiguientes medidas de Valor en Riesgo (VeR) y los pronósticos de la caída esperada están bien especificados. Además, medimos la significancia económica de la precisión del modelo con un ejercicio estratégico de cobertura de riesgo. Nuestro análisis cubre el periodo de octubre de 2003 a marzo de 2024, incluyendo la pandemia del COVID-19. Los resultados sugieren que el modelo de Realized HAR-GARCH supera los resultados del Realized GARCH en su habilidad de pronosticar volatilidad, sobre todo cuando el periodo de pronóstico es mayor. Sin embargo, esto no resulta en pronósticos superiores de VeR o caída esperada. |
dc.format.mimetype |
application/pdf |
dc.language.iso |
eng |
dc.rights |
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License |
dc.rights.uri |
https://creativecommons.org/licenses/by-nc-nd/4.0 |
dc.subject.other |
Treball de fi de màster – Curs 2023-2024 |
dc.title |
Modelling financial tail risk: multi-step forecasting of value-at-risk and expected shortfall with the realized Har-Garch model |
dc.type |
info:eu-repo/semantics/masterThesis |
dc.subject.keyword |
Volatility forecasting |
dc.subject.keyword |
Value-at-risk |
dc.subject.keyword |
Realized measures |
dc.subject.keyword |
Pronóstico de volatilidad |
dc.subject.keyword |
Valor en riesgo |
dc.rights.accessRights |
info:eu-repo/semantics/openAccess |