Financial institutions are beginning to integrate cryptocurrencies into their payment systems but must ensure to comply with anti-money laundering regulations to avoid facilitating transactions linked to criminal activities. We propose a cryptocurrency risk detection model that could be used by these institutions. It is novel in two ways: firstly, it prioritises a high recall, and secondly, organises the transaction data in a different 'address-level' manner. We test different Graph Neural Network ...
Financial institutions are beginning to integrate cryptocurrencies into their payment systems but must ensure to comply with anti-money laundering regulations to avoid facilitating transactions linked to criminal activities. We propose a cryptocurrency risk detection model that could be used by these institutions. It is novel in two ways: firstly, it prioritises a high recall, and secondly, organises the transaction data in a different 'address-level' manner. We test different Graph Neural Network (GNN) models and find that the Graph Attention Network using our address-level data achieves a recall of 83%, an improvement on results achieved in previous literature.
+
Las instituciones financieras están comenzando a integrar las criptomonedas en sus sistemas de pago, pero deben asegurarse de cumplir con las normas contra el lavado de dinero para evitar facilitar transacciones vinculadas a actividades delictivas. Proponemos un modelo de detección de riesgo en criptomonedas que podría ser utilizado por estas instituciones. Es novedoso de dos maneras: en primer lugar, prioriza un recall alto y también organiza los datos de la transacción en un formato a nivel ‘address’. ...
Las instituciones financieras están comenzando a integrar las criptomonedas en sus sistemas de pago, pero deben asegurarse de cumplir con las normas contra el lavado de dinero para evitar facilitar transacciones vinculadas a actividades delictivas. Proponemos un modelo de detección de riesgo en criptomonedas que podría ser utilizado por estas instituciones. Es novedoso de dos maneras: en primer lugar, prioriza un recall alto y también organiza los datos de la transacción en un formato a nivel ‘address’. Probamos diferentes modelos de Graph Neural Network (GNN) y encontramos que Graph Attention Network usando nuestros datos de nivel address logra un recall del 83%, una mejora en los resultados logrados en la literatura anterior.
+
Les entitats financeres comencen a integrar criptomonedes als seus sistemes de pagament, però han de garantir el compliment de la normativa contra el blanqueig de capitals per evitar facilitar les transaccions vinculades a activitats delictives. Proposem un model de detecció de risc de criptomoneda que podrien utilitzar aquestes institucions. És nou de dues maneres: en primer lloc, prioritza un record elevat i també organitza les dades de la transacció d'una manera diferent de "nivell d'adreça". ...
Les entitats financeres comencen a integrar criptomonedes als seus sistemes de pagament, però han de garantir el compliment de la normativa contra el blanqueig de capitals per evitar facilitar les transaccions vinculades a activitats delictives. Proposem un model de detecció de risc de criptomoneda que podrien utilitzar aquestes institucions. És nou de dues maneres: en primer lloc, prioritza un record elevat i també organitza les dades de la transacció d'una manera diferent de "nivell d'adreça". Provem diferents models de xarxa neuronal de gràfics (GNN) i trobem que la xarxa d'atenció gràfica utilitzant les nostres dades a nivell d'adreça aconsegueix un record del 83%, una millora dels resultats assolits en la literatura anterior.
+