Interweaving and Enriching Digital Music Collections for Scholarship, Performance, and Enjoyment

David M. Weigl, Werner Goebl
{lastname}@mdw.ac.at
University of Music and Performing Arts Vienna

Tim Crawford
t.crawford@gold.ac.uk
Goldsmiths, University of London

Aggelos Gkiokas, Nicolas F. Gutierrez, Alastair Porter, Patricia Santos
{firstname.lastname}@upf.edu
Universitat Pompeu Fabra

Casper Karreman, Ingmar Vroomen
{ckarreman|ingmar}@muziekweb.nl
Muziekweb

Cynthia C. S. Liem
C.C.S.Liem@tudelft.nl
Delft University of Technology

Álvaro Sarasúa
alvaro.sarasua@voctrolabs.com
Voctro Labs S.L.

Marcel van Tilburg
m.vtilburg@concertgebouworkest.nl
Royal Concertgebouw Orchestra

ABSTRACT
The turn toward the digital has opened up previously difficult to access musical materials to wider musicological scholarship. Digital repositories provide access to publicly licensed score images, score encodings, textual resources, audiovisual recordings, and music metadata. While each repository reveals rich information for scholarly investigation, the unified exploration and analysis of separate digital collections remains a challenge. TROMPA—Towards Richer Online Music Public-domain Archives—addresses this through a knowledge graph interweaving composers, performers, and works described in established digital music libraries, facilitating discovery and combined access of complementary materials across collections.

TROMPA provides for contribution of expert insights as citable, provenanced annotations, supporting analytical workflows and scholarly communication. Beyond scholars, the project targets four further user types: instrumental players; choir singers; orchestras; and music enthusiasts; with corresponding web applications providing specialised views of the same underlying knowledge graph.

Thus, scholars’ annotations provide contextual information to other types of users; while performers’ rehearsal recordings and formative annotations, conductors’ marked up scores, and enthusiasts’ social discussions and listening behaviours, become available to scholarly analysis (per user consent). The knowledge graph is exposed as Linked Data, adhering to the FAIR principles of making data Findable, Accessible, Interoperable, and Re-usable, and supporting further linking, re-interpretation and re-use beyond the immediate scope of the project.

CCS CONCEPTS
• Information systems → Digital libraries and archives; Music retrieval; Crowdsourcing; Web services.

KEYWORDS
Public domain, music archives, data infrastructure, linked data

ACM Reference Format:

1 MOTIVATION: ENRICHING CLASSICAL MUSIC

Classical music represents treasured cultural heritage and contemporary tradition, perpetuated and re-interpreted through practice, performance, scholarship, and enjoyment. Music libraries and archives assemble, preserve, and organise classical music resources, but underserve our more dynamic interactions with this repertoire. Enriching these interactions is important to engage and diversify the classical music audience, thus sustaining this tradition [18].

TROMPA1—Towards Richer Online Music Public-domain Archives—an EU-funded three year project currently completing its first year of activity, addresses this challenge by combining music information retrieval (MIR) technologies and crowd-sourcing approaches to publish, interlink, contextualise, and augment public-domain classical music resources. Building on established music repositories, TROMPA provides for discovery, enhancement, and contribution of musical scores, recordings, analyses, and interpretations, applying standard Web- and MIR-technologies to ensure reusable, scalable, and sustainable access to the data produced.

1https://trompamusic.eu

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

DLfM ’19, November 9, 2019, The Hague, Netherlands
© 2019 Copyright held by the owner/author(s).
https://doi.org/10.1145/3358664.3358666
2 PRECEDING PROJECTS
TROMPA builds on a number of related research projects on interlinking and enrichment of music information resources.

Performances as Highly Enriched aNd Interactive Concert eXperiences (PHENICX). PHENICX was an international research project funded under the EU’s Seventh Framework Programme. Motivated by notions that technological developments in the current digital age could offer new opportunities to make symphonic classical music more accessible to broader audiences, the project had two main focus areas [13, 16]. Research was performed both into improving audiovisual analysis techniques necessary for enabling multimodal enrichment; and, into finding ways to make such enrichments engaging and useful to the intended broader audiences.

Though producing impactful demonstrations of technologically enriched concert experiences (e.g. [1, 11, 19, 23]), scalability was limited. Professional-level enrichment requires the availability of clean and well-structured input data; in practice, this required considerable and expensive involvement of human experts, even though much of the needed human work would consist of quality checks. TROMPA addresses this limitation through crowd-sourcing components scalably involving human insight in enrichment activities.

Transforming Musicology. This wide-ranging UK-based, AHRC-funded project included a focus on semantic linking of musical resources and workflows, demonstrating how scholars might take fuller advantage of the possibilities for presentation, analysis and discovery inherent in a web of digital resources organised as Linked Data. One complex case study captured bio-physical reactions of 10 audience members in live performances of Wagner’s Ring cycle, with real-time annotations of staging details, resulting in a multimodal, time-aligned dataset in which data could be displayed or analysed in synchrony with musical score or recorded audio [21].

Methods for capturing the semantics of scholarly workflows were studied, analysing and comparing steps needed to achieve useful results in music(ologic)al tasks [20]. Other work, in the SLICK-MEM and SLoBR projects immediately preceding Transforming Musicology [6, 26], focussed on the problems of aligning multiple datasets compiled with inconsistent formats or standards. Another study around querying interlinked classical music catalogues [9] exposed limitations of SPARQL, the query language in general use for searching Linked Data. These will be addressed in TROMPA by the use of a graph-based data infrastructure in which searching is performed with the more scalability-oriented GraphQL language.

Fusing Audio and Semantic Technologies (FAST). A UK EPSRC-funded project currently concluding 5 years of research on audio processing technologies, studio science, and the Semantic Web, FAST defines Digital Music Objects (DMOs), flexible constructs coupling recorded music essence with rich, semantic, linked metadata [22], and explores their application throughout the music value chain, from production, through distribution, to consumption. DMOs retain provenance traces of their activities throughout this chain, with implications for digital libraries for musicology [7]. The DMO notion is particularly informative in TROMPA’s environment featuring the interlinking of music metadata, provenance-tracked contributions by human and machine agents, and re-use and re-interpretation within different usage contexts.

One output of the FAST project finding direct re-application within TROMPA is MELD (Music Encoding and Linked Data) [27], a semantic framework and open-source toolkit for the creation of dynamic digital scores incorporating Web Annotations². FAST applied MELD in music performance [14] and (re-)composition [8], and it has been used as a means of publishing musicology in a multimedia digital library context [15] outside of the project. Within TROMPA, MELD forms the basis of the digital score edition component, where it will be used to facilitate the creation and display of scholarly, performative, and discursive score annotations.

3 PUBLIC DOMAIN MUSIC DL RESOURCES
Numerous repositories offer public-domain classical music resources on the Web, with audio (and audio-visual) materials, score encodings, digitised sheet music and other printed material like books and articles, sources with contextual and historical background information and metadata. These sources are published by music archives and libraries, broadcasters, universities, research institutions and scholars, but also by commercial companies or individuals.

One of the largest and most notable collections, the International Music Score Library Project (IMSLP), also known as the Petrucci Music Library,³ contains over 475,000 scores by more than 17,500 composers. All scores included in IMSLP belong to the public domain in either Canada or the US. The IMSLP is an important source for musicians and scholars seeking printed editions of classical music pieces, often offering multiple versions of the same composition. IMSLP also contains Creative Commons-licensed recordings uploaded by users, and links to commercial recordings provided by music labels, which paid subscribers can listen to.

Another important public-domain classical music score repository is the Choral Public Domain Library (CPDL), which holds over 32,000 choral and vocal works by at least 3,200 composers.⁴ Both IMSLP and CPDL are important repositories as sources for different technologies and use cases in the TROMPA project.

The main resource for public domain structured (and machine-readable) music metadata is MusicBrainz, an "open music encyclopedia" maintained by a global community of users.⁵ Although aimed broadly at music of all genres, MusicBrainz contains an impressive number of classical works, composers and performers. The MusicBrainz data model includes many features that uniquely suit classical music, including distinctly identifying compositions and movements, annotating compositions with catalogue numbers, and relating recordings to people who participated in them—e.g., performing orchestra, any soloists, the conductor—as well as specific information about composers and works performed. Data quality and quantity vary on initial contribution, but community members can correct, adjust or complement the data. MusicBrainz’ structured data model and use of unique identifiers have made it an authority for music identification, supported by external links to other music repositories, websites and streaming services.

²https://www.w3.org/TR/annotation-model
³https://www.imslp.org
⁴https://www.cpdl.org/wiki
⁵https://musicbrainz.org
or the Deutsches Musikarchiv. Such collections are generally not publicly accessible outside of their source institution, remaining effectively ‘invisible’ (no audio playback; no display of artwork or record covers) and not searchable without specialist access.

Muziekweb, based in Rotterdam, does provide publicly accessible collection of music data. It offers access to over 600,000 CDs and 300,000 LPs, described using international library standards, which it is matching to domain-relevant repositories, including MusicBrainz, Wikidata, sheet music archives and streaming services. The archive, including digitized audio data that can be used for audio analysis and high-quality metadata, makes Muziekweb a relevant authority for classical music in the TROMPA project.

Each of these repositories provides useful information, but their interconnection is limited. Users of these platforms (and many others available on the Web) are often unaware that other platforms exist. Most repositories use their own vocabulary and description standards, and typically do not integrate complementary information available across collections.

4 DATA INFRASTRUCTURE

The data infrastructure centred around the TROMPA Contributor Environment (CE) provides for virtual integration of publicly accessible repositories. The CE is a web-based platform that identified and interlinks items hosted within such repositories, collating the combined contributions of TROMPA participants, partners, end-users, and machine processes, coordinating automated tasks and storing metadata pertaining to TROMPA activities.

The CE is implemented as a graph database adhering to FAIR principles [28], employing established Semantic Web ontologies, and making entities retrievable alongside licensing and provenance information via URIs as RDF (JSON-LD). The graph represents metadata describing music content (e.g., score encodings, images, audiovisual recordings), but does not incorporate the content itself; rather, it refers to content hosted in web-accessible public repositories using URIs. Where TROMPA activities generate derivative materials (e.g., crowd-sourced corrections of score encodings; user-contributed performances), these too are contributed to public repositories and referenced from the CE alongside provenance metadata. A GraphQL endpoint provides query access.

Two systems make direct use of the graph within the CE: a collection of automated software agents, and a system to solicit contributions from users through crowd-sourcing tasks. Software agents can query the CE to find new items and perform tasks (e.g., audio signal analysis to calculate key or rhythm information; performance-to-score alignment; or audio transcription). A publish/subscribe notification system allows agents to request notification of new items as they are added to the CE, allowing them to perform their tasks as soon as items become available. Software clients accessing the CE can likewise request notification once a specified task has completed; or, request that users perform actions (e.g., annotation; verification; correction) on items stored in the CE.

Figure 1 illustrates a workflow supported by the CE. An instrumentalist user (see Section 5) wishes to rehearse a piece. The CE resolves this to the URI of an IMSLP entry, storing a reference to a PDF of the score hosted there. An OMR task processes the PDF, storing the output at a web-accessible location referenced by the CE. Next, the output (in MEI format) is distributed to crowd annotators in the form of numerous microtasks, selected based on annotator expertise and distributed to maximize the accuracy of crowd improvements with respect to the effort needed. The result of the crowd-sourcing process is a high-quality MEI file stored in a public-domain repository and referenced by the CE. Consequently, the derived MEI score is available not only to the user initiating the process, but to all TROMPA users—and to the wider Web.

5 FIVE USE CASES

TROMPA targets five user types—music scholars, instrumental players, choir singers, orchestras, and music enthusiasts—through applications providing specialised views of the same underlying knowledge graph. User contributions provide holistic benefits to other users across all use cases. Here, we present an overview of services TROMPA will provide to each type of user, which are informed by user studies conducted over the course of the project. We further consider how each use case benefits from, and provides potential value to, digital musicology.

Scholars. TROMPA allows scholarly users to query interconnected music repositories using the CE, and to contribute insight through scholarly annotation and computer-assisted interpretation (e.g., using feature extraction). All contributions are associated

---

9https://www.dnb.de/EN/Ueber-uns/DMA/dma_node.html
10https://music-encoding.org
with provenance metadata and furnished with unique identifying
URIs, making them citable, reproducible, and reusable in different
contexts. Scholars’ Web Annotations may target musical scores,
audiovisual recordings, digital images, and other digital library
resources at various granularities, providing a basis for scholarly
discussion and digital multimedia publishing with MELD (per [15]).

Orchestras. TROMPA opens up interesting new possibilities for
orchestras, both as performers and as content owners. Renowned
conductors interpret the same masterpieces in different ways, re-
lected by annotated orchestral parts provided to musicians for a
given performance project. TROMPA enables orchestra members,
librarians, and conductors to efficiently share these written anno-
tations, and to save annotations from conductors’ scores for later
study. This allows original conducting scores of famous conductors
from the past, such as by Willem Mengelberg, to be digitized, their
annotations interpreted and linked to MEI score encodings, and
audio-visual concert recordings to be aligned, providing rich study
material for scholars, musicians, Kenner und Liebhaber.

Instrumental players. TROMPA is developing software to sup-
sort instrumentalists and ensembles in their daily rehearsal regime,
enriching rehearsal and teaching situations through immediate feed-
back on ones own and others’ performances [2, 12]. To illustrate:
A pianist practicing a novel piece, say Beethoven’s Appassionata,
selects the score on her tablet, retrieving a rendered MEI encoding
from the CE. While playing, her performance is streamed as au-
dio or symbolic performance data to an alignment process which
synchronizes the performance with the MEI score. After she stops
performing, the system displays a note-by-note tempo curve of her
performance excerpt. She then selects her favorite performance
of the piece by Claudio Arrau from several other performances
on YouTube and receives Arrau’s tempo curve to compare against
her own performance. While listening to Arrau’s performance and
watching his tempo curve, she writes a comment on a specific
section, creating a Web Annotation targeting both the pertinent ex-
ccerpt of the score and of Arrau’s recording, stored with provenance
data in the CE. A scholar analysing this particular section during
a Beethoven piano sonata project will be able to access her (and
other’s) annotations of Arrau’s performance, incorporate them into
his analysis, and reference her comment in his publication.

Choir singers. Choir singers engaging in individual practice will
be served by a practicing application enabling them to sing along
with synthesized versions of any digital choral score available
through the TROMPA data infrastructure, as well as receiving au-
tomatically computed feedback on their performance [17] (e.g.,
regarding intonation and timing). To provide natural singing voice
synthesis for choral pieces, we are adapting current models for
solo singing based on neural networks [5] using techniques such
as voice cloning [4]. Choir singing synthesis will be provided as
a service through the Voiceful Cloud API, an existing solution for
integrating several speech and singing voice related technologies
in a wide variety of applications. Users of the application will generate
rich data for exploration by music scholars, revealing those musical
excerpts, for instance, that commonly require prolonged practice
time; types of intonation error that appear in specific parts; and so

on. At the same time, choir singers can greatly benefit from input
by music scholars; for instance, score annotations could be parsed
and considered for the synthesis to generate more natural-sounding
examples, and relevant annotations could be shown to users of the
application to provide greater insight into the piece being practiced.

Music enthusiasts. This use case targets users that lack formal
music knowledge but nevertheless enjoy high levels of music en-
gagement. Mediation over arousal and mood through music can
have positive effects to support specific daily routines (e.g., learning
moments, [5, 24, 25]). TROMPA is developing applications to gen-
erate music recommendations aimed to support a mood-boosting
or mood-modulating activity, following an audio context-based
approach. Music enthusiasts will be able to interact with audio, an-
notating data related to emotions (i.e., mood, emotions elicited by
the musical piece), as well as exploring and discussing annotations
provided by other users or software agents. Recommendation sys-
tems incorporating advanced classification algorithms with human-
in-the-loop feedback provided by the TROMPA infrastructure will
generate playlists to help users enhance or change their mood ac-
cording to their context. Enthusiasts will benefit from scholarly
insight in the form of annotations of their favourite music pieces.
The open datasets of emotion tags associated with specific pieces
and listening contexts will be of interest to music scholars, enabling
for instance the correlation of listeners’ cultural perspectives and
music emotion elicitation. Enthusiasts’ discussions are of further
interest (per [10]).

6 OPEN CHALLENGES

TROMPA is currently completing its first year of activity, with
components largely implemented in prototypical form. To attain
the scalability required for the project to be truly useful to digital
musicology scholarship, several challenges remain to be addressed.
Meaningfully structured, web-addressible music encodings—such
as MEI scores— are needed to support fine-grained cross-modal
targeting of Web Annotations interconnected with (elements) of
musical score, envisioned in TROMPA’s use cases, but these re-
main relatively scarce. We envision that a large community of
music lovers of all expertise levels and backgrounds will be able to
build and improve a digital library of public-domain music score
encodings by applying current MIR technologies with a human-in-
the-loop approach as a foundation for enrichment and annotation.
Versioning and provenance tracking will serve important roles in
crowd motivation. Another challenge lies in the boundless potential
for different types of scholarly claims and annotations of interest
to digital musicologists. Though the Web Annotation data model
supports expression of arbitrary custom motivations, these must
be captured and modelled if they are to be expressed and queried
consistently by different scholarly users.

To address these challenges, and to serve its overall purpose, it is
imperative upon TROMPA to involve the wider digital musicology
community in its activities. By adopting an open source, public do-
main, FAIR, and richly provenanced approach, TROMPA is working
towards richer online music public-domain archives for all users.
ACKNOWLEDGEMENTS
This project has received funding from the European Union’s Horizon 2020 research and innovation programme H2020-EU.3.6.3.1 - Study European heritage, memory, identity, integration and cultural interaction and translation, including its representations in cultural and scientific collections, archives and museums, to better inform and understand the present by richer interpretations of the past under grant agreement No. 770376. We gratefully acknowledge the collaboration of our colleagues in the TROMPA consortium.

REFERENCES