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ABSTRACT

The system gamma of the imaging pipeline, defined as the product of the encoding and decoding gammas,
is typically greater than one and is stronger for images viewed with a dark background (e.g. cinema) than
those viewed in lighter conditions (e.g. office displays).’® However, for high dynamic range (HDR) images
reproduced on a low dynamic range (LDR) monitor, subjects often prefer a system gamma of less than one,?
presumably reflecting the greater need for histogram equalization in HDR images. In this study we ask subjects
to rate the perceived quality of images presented on a LDR monitor using various levels of system gamma. We
reveal that the optimal system gamma is below one for images with a HDR and approaches or exceeds one for
images with a LDR. Additionally, the highest quality scores occur for images where a system gamma of one is
optimal, suggesting a preference for linearity (where possible). We find that subjective image quality scores can
be predicted by computing the degree of histogram equalization of the lightness distribution. Accordingly, an
optimal, image dependent system gamma can be computed that maximizes perceived image quality.

Keywords: System gamma, High Dynamic Range, Low Dynamic Range, Image Quality, Natural Images,
Lightness Perception

1. INTRODUCTION

The encoding gamma of most image formats and the decoding gamma of displays can be approximated by a
gamma function. The encoding gamma is a compressive non-linearity (Yene < 1) and the decoding gamma an
expansive non-linearity (y4ec > 1). System gamma is the final gamma value after the signal has passed through
both the encoding and decoding gammas. Early display engineers assumed that the optimal system gamma was
linear (voys = 1),% % however in practice, display engineers set the system gamma to a value greater than one. The
precise value appears to depend on the viewing conditions: In the early 60’s it was observed that photographic
prints, typically viewed with a light background used a system gamma of 1.1,2 whilst transparencies (e.g. slides
or movies), typically viewed with a dark surround, used a system gamma of 1.6. These numbers correspond
well to the system gammas used in contemporary display pipelines; personal and office displays, again typically
viewed with a light background, use a system gamma, of 1.1, whilst modern cinemas use a system gamma of 1.5.1
Bartleson and Brenman?® argue that people prefer to view a perceptually linear version of the original image,
but that a non-linear system gamma (y # 1) is needed to compensate for a mismatch between the viewing
conditions of the original scene and the displayed image. Due to the strong correlations across space that exist
in natural images, the area outside a camera’s field of view is likely to have a similar mean luminance to the
regions within the camera’s field of view.” In contrast the area surrounding an image often has a different
luminance, particularly for self-illuminating displays. For instance, cinema screens are nearly always viewed with
a surround that is darker than the display itself. This is an issue because the surround luminance condition is
known to affect the relationship between onscreen luminance and perceived lightness; broadly speaking, when
the surround luminance is dark, perceived lightness is a compressive function of onscreen luminance, but when a
lighter surround is used the function becomes closer to linear, or even expansive.®1° It was the observation that
the non-linear perception of light is approximately the inverse of the system gammas used by display engineers
that led Bartleson and Brenman® to hypothesize that consumers prefer to view a perceptually linear version
of the original image. This hypothesis has received support from psychophysical experiments that demonstrate
that preferred system gamma does indeed increase with background luminance and vice-versa.® 4 11,12
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Figure 1. Statistics from the high dynamic range survey by Mark Fairchild.'®> The dynamic range of images plotted
against (a) the median absolute luminance of images and (b) the relative median luminance of images after they have
been scaled to between 0 and 1. (c) plots the dynamic range of images against the value of system gamma that achieve
the greatest histogram equalization of either the luminance distribution (blue dots) or the perceived lightness distribution
(green dots). Note that when lightness perception is taken into account, the optimal system gamma may be greater than
one for images with a dynamic range of less than three orders of magnitude. Two images are presented with a system
gamma of one; (d) has dynamic range of 30.4 and (e) has a dynamic range of 17,313,520.

The motivation for this study comes from the twin observations that (a) the preferred system gamma is highly
image dependent!® 15 and (b) the recent finding that for high dynamic range images, the preferred system gamma
may be less than one (when presented on a low dynamic range monitor),* where dynamic range (DR) refers to the
ratio between the maximum and minimum luminance values in a scene or image. The DR of natural scenes may
span up to eight orders of magnitude, however the majority of imagery over the last century has been captured
using low DR technology which can only capture between two and three orders of magnitude. This is also true
for scientific databases of natural images.'®!” To emphasize the bias this may cause in Figure 1 we plot the DR
of images from the high dynamic range survey of Mark Fairchild!® against the median luminance of the either
(a) the absolute luminance values in the original scene or (b) the image after having been scaled to between zero
and one. Figure 1 demonstrates a clear negative correlation between DR and the median luminance, particularly
after normalization (Pearson’s correlation R = 0.9,p < 0.001). Given that most commercially available cameras
can only capture between two and three orders of magnitude, the majority of properly exposed images must
exist within the left hand side of Figure 1. As a results neither scientific, personal, nor commercial images will
encapsulate the full range of median luminance values that exist in the natural world. Recently, multi-exposure
and fusion techniques have become more widespread. Such techniques can capture the full range of naturally
occurring luminance values by combing multiple images of the same scene, captured using different exposure
durations. With the rise of high DR capture techniques, a different problem has arisen. Consumer monitors can
only display a DR of between two and three orders of magnitude, meaning a veridical representation of the relative
luminance values of a high DR scene is impossible. When images with a high DR are presented with a system
gamma of one the images are often dominated by dark, low contrast regions (Figure le), whilst images with a



low DR have excellent reproduction quality (Figure 1d). To solve this problem various tone-mapping operators
(TMOs) have been developed. The goal of most TMOs is to recover the detail present in the original scene,
whilst preserving the 'natural feel’ of the scene.'® For instance many TMOs apply a compressive non-linearity
to the image.!® This procedure achieves some degree of histogram equalization by stretching the representation
of the relatively common, low luminance values and compressing the representation of the relatively sparse, high
luminance values. System gamma can also perform an analogous histogram equalization when an appropriate
value is selected. Accordingly, it may be hypothesized that subjects image dependent preference for system
gamma is determined by the relative need for histogram equalization in an image.* 1415

1.1 Aim

The aim of this study is to investigate to what extent histogram equalization plays a part in subjects choice of
preferred gamma. The importance of histogram equalization is likely to have been underestimated in previous
studies because of the low DR images used.!®2° The high dynamic range survey by Mark Fairchild!® makes
for an excellent database of images to study image dependent preference in system gamma because it includes
images with a broad range of DRs and thus luminance distributions (see Figure 1). In this paper we extend the
research of Liu and Fairchild* who investigated preference for system gamma using four images from the high
dynamic range survey'® and a wide variety of background luminance conditions. The aim of the original study,
was to examine the influence of background luminance on preferred gamma and the issue of dynamic range was
not a primarily topic of investigation. However, the observation was made that subjects preference for system
gamma was highly image dependent. In the original study subjects were asked to make pairwise comparative
judgements of two simultaneously presented images and overall preference was inferred using Thurstone’s law of
comparative judgements.?! Although pairwise judgements are considered to allow precise comparisons between
images, they suffer from a combinatorial explosion when too many images are used. In order to extend the study
to a greater number of images, and to allow arbitrary comparisons between conditions, we ask subjects to make
absolute image quality judgements. An analysis of subjects between and within trial-retrial reliability when
making absolute image quality judgements is included in the results section. To allow a comparison between the
two experimental paradigms, experiment one replicates a subset of the conditions used in Liu and Fairchild.# In
experiment two we extend the procedure to a greater number of images.

2. METHODS
2.1 Subjects

All subjects had normal to corrected vision. Subjects were informed they were free to leave the experiment at
any time. Subjects were all members of the lab group and were not paid. Experiment one had 10 subjects.
Experiment two had 8 subjects.

2.2 Apparatus

Stimuli were generated on an Apple MacBook running MATLAB (MathWorks) with functions from the Psych-
toolbox.??23 The experiments took place in a purpose built laboratory in a darkened room. Subjects viewed
stimuli on a Philips 109B CRT monitor running with a resolution of 1280 by 960 at 75 Hz. Images were viewed
at a distance of 58cm so that 36 pixels subtended 1 degrees of visual field. The full display subtended 35.5
by 25.5 degrees. Monitor linearization was achieved by recording the relationship between the signal from the
graphics card and the monitor luminance (using a Konica Minolta LS-100 photometer) and linearization took
place used the internal lookup table of the graphics card. We used bit-stealing to increase the effective bit rate
of the monitor from 8-bit per channel to a pseudo 10-bit grayscale channel.?* The minimum luminance of the
monitor is 0.6cdm ™2 and the maximum 112cdm 2.

2.3 Procedure

All procedures were approved by by the Informe del Comite Etico de Investigacion Clinica and conformed with
the Declaration of Helsinki. Subjects were asked to rate each image upon a sliding scale presented on the bottom
of the display. The scale horizontally subtended 20 degrees and had three markers at the beginning, middle
and end. Written from left to right and below the three markers were "Terrible’, ’Acceptable’ and "Excellent’.



Subjects were given no verbal or written instructions other than to rate each image along the given scale.
Subjects interacted with the scale via a mouse. The position of the score marker was randomized on each trial.
Subjects selected the marker by placing the cursor over the score marker and pressing (but not holding) the left
mouse key. This action selected the score marker turned it from white to red. The position of the score marker
could then be altered by moving the mouse left of right. The score marker was not allowed to go outside of the
boundaries of the scale. Upon pressing the left mouse button for a second time the marker’s position became
fixed. The subjects were free to adjust the marker as many times as necessary. When the subject was satisfied
with the given score, pressing the spacebar on the keyboard would initiate the next trial. To allow comparison
with ongoing research in our laboratory the results are reported on a nine-point scale, where 0 corresponds to
‘terrible, 5 to ’acceptable’ and 9 to ’excellent’.

2.4 Stimulus

Images were .EXR files from the high dynamic range survey which can be obtained online. The full details of the
image registration can be found in,' but we shall review the main points here. Each image was constructed from
between 8 to 18 (with a median of 9) exposures of the same scene separated by a one-stop. Images were fused
into high dynamic range images using Adobe Photoshops Merge-to-HDR function to generate a radiance map
containing the relative luminance values in a scene. Absolute luminance information was obtained by recording
from the scene using a photometer and computing an appropriate scaling factor.

Before presentation on our CRT monitor each image was rescaled to a quarter or an eighth of the original
size using the Matlab function imresize. The base images provided online are not of equal size due to clipping
for ’aesthetic’ purposes.'® For the large condition the average image subtended 29.5 by 18.2 degrees, in the small
condition the average image subtended 14.8 by 9.1 degrees. The nearest methodology was used to perform
resizing. This methodology resizes via a simple subsampling the stimulus at the required resolution and was
found to have the least impact on the shape of the luminance distribution: Natural scenes tend to be low key
and the mode of the luminance histogram (when linear intensity scale is used) is frequently between the values
of zero and one. Sampling methodologies that operate via interpolation shift the peak towards higher values.
This is a particular problem for tone-mapping operators that are designed with natural image statistics in mind.

3. RESULTS
3.1 Results: Within and Between Subject Consistency

For all experiments reported in this paper subjects completed each trial twice. This allow us to compute the trial-
retrial correlation and asses the reliability of our subjects. To do so, we combine the data across experiments. We
find that the trail-retrial correlations of our subjects is strong (Pearson’s correlation R = 0.95,p < 0.0001), this
corresponds to a mean absolute difference between trials of 0.7 on a 9 point scale. This indicates that subjects
make consistent and reliable absolute image quality judgments, consistent with the findings of other studies.'® 2°
The correlation between subjects is also strong (Pearson’s correlation R = 0.9, P < 0.0001), although the mean
absolute difference between subjects (when viewing the same stimulus) is greater at 1.5 on a 9 point scale. Thus
subject’s relative judgements of image quality demonstrate inter-subject constancy, although subjects absolute
judgements may be scaled differently. In all the data reported in this study we report the image quality scores
averaged across subjects.

3.2 Results: Experiment One

The aim of experiment one was to replicate the results of Liu and Fairchild* using an absolute rating scale rather
than pairwise comparative judgements. The results for the three images (Amikeus Beaver Dam 1, Hancock
Kitchen Outside and Peak Lake) are shown in Figure 2 alongside a tone-mapped version of the image with the
approximately correct system gamma applied (note the exact system value depends on the printer or monitor
being used to view the stimulus). The fourth image, Lab Typewriter was not used in this study. The aim of
the Liu and Fairchild* paper was to investigate the impact of background luminance on the preferred system
gamma. The experimental setup?® consisted of an LCD monitor sat within a room with ceiling to floor lighting
that could be manipulated independently of the display luminance. Images were displayed across the full field
of the displays. We do not have the luxury of such a configuration. In our experiment, the image was displayed
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Figure 2. Results for experiment one, aimed at reproducing the results of Liu and Fairchild.* The top row illustrates the
impact of various system gamma levels upon the image Amikeus Beaver Dam 1. The bottom row shows the average image
quality scores as a function system gamma, under two background luminance conditions; dark and light. For images (a)
and (b) preferred gamma is below one, for image (c) preferred gamma is one. For all images the preferred system gamma
is less when light background is used.

over a subset of the full monitor and two surround conditions were used: black and white corresponding to
the minimum and maximum luminance of the monitor. In experiment one the images subtended 29.5 by 18.5
degree of the visual field on a display than subtends 35.5 by 25.5 degrees, corresponding to 60% of the total
monitor area. We note that previous results suggest the impact of the background luminance is mostly limited
to the immediate surround.?%2” To investigate the impact of the surround-image ratio an additional condition
is reported in Figure 6 using images that subtend 14.8 by 9.1 degrees, just 14% of the total monitor area.

The results of experiment one are shown in Figure 2. Two main patterns are apparent: First, when a light
background is used, subjects tend to prefer a lower system gamma. Second, the preferred system gamma is
considerably less for the two images images Amikeus Beaver Gam PM1 and Hancock Kitchen than for Peak Lake
the preferred system gamma is one. Both findings are consistent with the findings noted in Liu and Fairchild.*
We note that for both Amikeus Beaver Gam PM1 and Hancock Kitchen the luminance distribution is low key,
in contrast Peak Lake has a relatively flat histogram, consistent with the theory that histogram equalization
determines image dependent preference for system gamma.

3.3 Results: Experiment Two

In experiment two we extended the experiment to an additional 13 images (16 in total). As DR, not background
luminance was our primary objective we only ran the dark background condition. In Figure 3 we plot the preferred
system gamma for each image against the image quality score at that preferred system gamma (i.e. the maximum
reported image quality score). The results show a linear relationship (Pearson’s correlation R = 0.85,p < 0.001).
For the images and the dark background luminance condition used, subjects never reported a preferred system
gamma of greater than one. The results indicate a preference for linearity, where no histogram equalization is
necessary, a point we return to in the discussion.

3.4 Results: Predictive Model

Preferred gamma is affected by both the immediate surround of a display® and the image in question.® 1415

A unifying theory is that subjects choose the system gamma that produces the flattest (perceived) lightness
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Figure 3. Preferred system gamma against the reported image quality scores for images displayed on a dark background.
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Figure 4. (a) The histogram of the raw’ HDR image after normalization between the range 0 and 1. (b) The onscreen
luminance histogram after being passed through the system gamma of the imaging pipeline. (c) The estimated perceived
lightness distribution after being passed through an vpay. (d) We compute the flatness of a distribution as the root mean
square difference between the cumulative lightness distribution and the identity line.
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Figure 5. The results of the predictive model are illustrated using the images/data from experiment one. (a) Flatness as
a predictor of image quality using the optimal v,y (b) Pearson’s R-score as a function of 7.

distribution. This theoretical framework incorporates both the impact of the immediate surround, which is
known to modulate the manner in which lightness is perceived, and the statistics of the image in question,
which will affect the degree of equalization required. To test this hypothesis we model perceived lightness as
a gamma function of onscreen luminance. A gamma function has several advantages (a) it has mathematical
simplicity, particularly considering that system gamma can also be modeled as a gamma function and (b) a
gamma function can capture the continuum from compressive to expansive non-linearities. We acknowledge
that a gamma function may not correctly capture lightness perception under all conditions,® ' but note that
lightness perception is highly sensitive to the exact experimental conditions and no research claims to have
developed a function that can generalize to all experimental conditions; moreover, only a few studies have
investigated lightness perception using natural scenes.'®-?® Finally, as we shall infer the onscreen luminance to
lightness function from our dataset, rather than directly measure the function, we consider it wise to use the
most general formula available.

The model schematic is illustrated in Figure 4. The model operates on relative luminance values so the first
step is to normalize the HDR radiance map to between 0 and 1. Second, the normalized image N is passed
through the system gamma of the display pipeline to generate an estimate of I the relative onscreen intensity
values.

I = N} (1)

Third, the onscreen intensity values I are then passed though an additional point-wise non-linearity to
compute an estimate of the perceived lightness distribution L.

Ly =1 (2)

Note, stages two and three can mathematically be combined into one stage, but conceptually we prefer to keep
perceptual and physical processes separate, particularly given that a more complex model of lightness perception
may be needed in the future.

Finally, we compute the cumulative histogram h of the lightness distribution and compute the degree of
flatness F' as the root mean square difference between the cumulative lightness distribution and the unity line.
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Figure 6. (a) The estimated value of 7,s, is positively correlated with the median luminance of the stimulus. (b) We
plot how the estimated vpsy varies with both the background luminance condition and the image size. As expected the
estimated 7psy is closer to one when a dark background is used. When a small surround luminance is used the estimated
Ypsy is modulated upward in the light background condition, but there is only a limited impact on the black background
condition.

To estimate the value of 7,4, that best models human perception, we find the value that gives the maximum
correlation between our measure of flatness F' and subjects image quality scores. As lightness perception is
likely to vary both with the background luminance condition and the image in question, ~,s, is fit separately
for each condition. This procedure is applied to all sixteen images used. In Figure 5 but we illustrate the model
performance using the three images used in experiment one. Figure 5(a) plots the measured flatness for each
image using the optimal value of v, against subjects average image quality scores. Figure 5(b) plots v,s, against
the Pearson’s correlation for the three images used. The results show image dependent variability in the selected
Vpsy- To investigate this further in Figure 6 we plot the medium luminance of a stimulus against the estimated
“psy for all 16 images tested. The results reveal a positive correlation (Pearson’s correlation R = 0.82,p < 0.001)
demonstrating that the luminance distribution of the image in question affects lightness perception. In order to
investigate the role of background luminance Figure 6(b) plots the estimated gamma from experiment one and
an additional experiment using smaller base images. The larger images used in experiment one covered 60% of
the total screen area and the smaller images took up just 14% of the total screen area. The results demonstrate
that both image size and background luminance affect the estimated 7,s,. As expected from previous research
the estimated values of 7, is closer to zero (i.e. stronger) in the dark background condition. The difference
between the two background conditions is greater in the small image condition. This is consistent with the
overall luminance distribution of the display (image and background) affecting lightness perception. Consistent
with this is the observation that changing the image size has a much greater impact on the estimated 7,4, in
the light luminance condition. Note that the average luminance of the stimulus is closer to 0 (black) than to 1
(white), thus altering the image size makes a greater difference the mean luminance of the display configuration
in the white background condition, than in the black background condition.

In order to generate a model that allows the prediction of optimal system gamma for any image we need to
have a predictive model for 7,,. To do so we compute the linear relationship between the log of the median
luminance uy /5.

Ypsy = mlogy(uy/e) +c (4)

We estimate m = 0.02 and ¢ = 0.46. We acknowledge that these parameters may be influenced by the
existence of two outliers and that the model needs to be tested on a new data set. Moreover, any predictive
model must also include data for different background conditions and for different sizes of image and background.



However, we note that extending the current research paradigm has the potential to provide answers to these
questions.

4. DISCUSSION

We demonstrate that subjects preference for system gamma can be predicted by the degree of histogram equal-
ization in the perceived lightness distribution. This model can explain both how preferred system gamma varies
with the background luminance condition and how preferred system gamma varies with the statistics of the
image in question.

By extending our model to the full 105 images within the Fairchild high dynamic survey we can investigate
the distribution of estimated preferred system gammas. In Figure 1(c) we plot dynamic range (DR) against the
system gamma that most flattens the intensity distribution (blue dots) and the system gamma that best flattens
the lightness distribution (green dots), where lightness is estimated using a vps, with a value of a 0.3. We find
that for images with a DR of less than three orders of magnitude the estimated preferred gamma is greater than
one, consistent with the findings of early studies using low DR images.? 14 ® Conversely, when the DR is greater
than three orders of magnitude, the estimated preferred gamma is less than one.

The aim of tone-mapping algorithms is to ensure that high DR images look as good as possible on a low DR
monitor. Our results demonstrate that a tone-mapping operator that simply searches for the optimal system
gamma does not produce satisfactory images if the DR is high (see Figure 3). However the current analysis
and image database provides an excellent way to test the performance of tone-mapping operators. If we treat
system gamma as a dumb, yet optimized tone-mapping operator, then we can test more advanced algorithms
against this baseline. Ideally, tone-mapping operators should be able to rotate the perceived image quality of all
images shown in Figure 3 such that they have the same reported image quality as the low DR images. This could
be done for a range of target displays with different DRs. Importantly, we suggest that future papers aimed
at assessing the performance of tone-mapping operators use an image set that span the full range of dynamic
ranges. Note, it is also important that tone-mapping operators preserve the appearance of low DR images.

Finally, a companion paper extends the perceptual theory developed in this paper to develop tone-mapping
operators.29
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