Germano, FabrizioSobbrio, FrancescoUniversitat Pompeu Fabra. Departament d'Economia i Empresa2020-05-252020-05-252016-12-31http://hdl.handle.net/10230/33903Ranking algorithms are the information gatekeepers of the Internet era. We develop a stylized framework to study the effects of ranking algorithms on opinion dynamics. We consider rankings that depend on popularity and on personalization. We find that popularity driven rankings can enhance asymptotic learning while personalized ones can both inhibit or enhance it, depending on whether individuals have common or private value preferences. We also find that ranking algorithms can contribute towards the diffusion of misinformation (e.g., fake news ), since lower ex-ante accuracy of content of minority websites can actually increase their overall traffic share.application/pdfengL'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative CommonsOpinion dynamics via search engines (and other algorithmic gatekeepers)info:eu-repo/semantics/workingPaperranking algorithmsopinion dynamicswebsite trafficasymptotic learningstochastic choicemisinformationpolarizationsearch enginesfake news.Microeconomicsinfo:eu-repo/semantics/openAccess