Louro, JavierPosso, MargaritaHilton Boon, MicheleRomán, MartaDomingo, LaiaCastells, XavierSala Serra, Maria2019-11-212019-11-212019Louro J, Posso M, Hilton Boon M, Román M, Domingo L, Castells X. A systematic review and quality assessment of individualised breast cancer risk prediction models. Br J Cancer. 2019 Jul;121(1):76-85. DOI 10.1038/s41416-019-0476-80007-0920http://hdl.handle.net/10230/42913BACKGROUND: Individualised breast cancer risk prediction models may be key for planning risk-based screening approaches. Our aim was to conduct a systematic review and quality assessment of these models addressed to women in the general population. METHODS: We followed the Cochrane Collaboration methods searching in Medline, EMBASE and The Cochrane Library databases up to February 2018. We included studies reporting a model to estimate the individualised risk of breast cancer in women in the general population. Study quality was assessed by two independent reviewers. Results are narratively summarised. RESULTS: We included 24 studies out of the 2976 citations initially retrieved. Twenty studies were based on four models, the Breast Cancer Risk Assessment Tool (BCRAT), the Breast Cancer Surveillance Consortium (BCSC), the Rosner & Colditz model, and the International Breast Cancer Intervention Study (IBIS), whereas four studies addressed other original models. Four of the studies included genetic information. The quality of the studies was moderate with some limitations in the discriminative power and data inputs. A maximum AUROC value of 0.71 was reported in the study conducted in a screening context. CONCLUSION: Individualised risk prediction models are promising tools for implementing risk-based screening policies. However, it is a challenge to recommend any of them since they need further improvement in their quality and discriminatory capacity.application/pdfengcopyright © The Author(s) 2019. Open Access. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.Mama - CàncerA systematic review and quality assessment of individualised breast cancer risk prediction modelsinfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1038/s41416-019-0476-8info:eu-repo/semantics/openAccess