Gialampoukidis, IliasLiparas, DimitrisVrochidis, StefanosKompatsiaris, Ioannis2017-06-162017-06-162016Gialampoukidis I, Liparas D, Vrochidis S, Kompatsiaris I. Query-based topic detection using concepts and named entities. In: Vrochidis S, Melero M, Wanner, Grivolla J, Estève Y. MMDA 2016 Multimodal Media Data Analytics Proceedings of the 1st International Workshop on Multimodal Media Data Analytics co-located with the 22nd European Conference on Artificial Intelligence (ECAI 2016); 2016 30 August; The Hague, Netherlands. [place unknown]: CEUR Workshop Proceedings, 2016. p. 18-22.http://hdl.handle.net/10230/32308Comunicació presentada a: 1st International Workshop on Multimodal Media Data Analytics, celebrat juntament amb 22nd European Conference on Artificial Intelligence (ECAI 2016), el 30 d'agost de 2016 a La Haia, Holanda.In this paper, we present a framework for topic detection in news articles. The framework receives as input the results retrieved from a query-based search and clusters them by topic. To this end, the recently introduced “DBSCAN-Martingale” method for automatically estimating the number of topics and the well-established Latent Dirichlet Allocation topic modelling approach for the assignment of news articles into topics of interest, are utilized. Furthermore, the proposed query-based topic detection framework works on high-level textual features (such as concepts and named entities) that are extracted from news articles. Our topic detection approach is tackled as a text clustering task, without knowing the number of clusters and compares favorably to several text clustering approaches, in a public dataset of retrieved results, with respect to four representative queries.application/pdfeng© The authors. Atribución-NoComercial-SinDerivadas 3.0 España (CC BY-NC-ND 3.0 ES)Query-based topic detection using concepts and named entitiesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/openAccess