Barbieri, FrancescoMarujo, LuísKaruturi, PradeepBrendel, William2018-10-242018-10-242018Barbieri F, Marujo L, Karuturi P, Brendel W. Multi-task emoji learning. In: Wijeratne S, Kiciman E, Saggion H, Sheth A, editors. Proceedings of the 1st International Workshop on Emoji Understanding and Applications in Social Media (Emoji 2018) co-located with the 12th International AAAI Conference on Web and Social Media (ICWSM 2018); 2018 Jun 25; Stanford, CA. [Aachen]: CEUR; 2018. 9 p.http://hdl.handle.net/10230/35646Comunicació presentada a la 12th International AAAI Conference on Web and Social Media (ICWSM 2018) celebrada a Stanford (EEUU) el 25 de juny de 2018.Emojis are very common in social media and understanding their underlying semantics is of great interest from a Natural Language Processing point of view. In this work, we investigate emoji prediction in short text messages using a multi-task pipeline that simultaneously predicts emojis, their categories and sub-categories. The categories are either manually predefined in the unicode standard or automatically obtained by clustering over word embeddings. We show that using this categorical information adds meaningful information, thus improving the performance of emoji prediction task. We systematically analyze the performance of the emoji prediction task by varying the number of training samples and also do a qualitative analysis by using attention weights from the prediction task.application/pdfengCopyright © 2018 the authorsMulti-task emoji learninginfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/openAccess