Greenacre, MichaelNenadic, OlegUniversitat Pompeu Fabra. Departament d'Economia i Empresa2017-07-262017-07-262005-09-01Journal of Statistic Software, Vol. 20, Issue 3, Feb 2007http://hdl.handle.net/10230/678The generalization of simple correspondence analysis, for two categorical variables, to multiple correspondence analysis where they may be three or more variables, is not straighforward, both from a mathematical and computational point of view. In this paper we detail the exact computational steps involved in performing a multiple correspondence analysis, including the special aspects of adjusting the principal inertias to correct the percentages of inertia, supplementary points and subset analysis. Furthermore, we give the algorithm for joint correspondence analysis where the cross-tabulations of all unique pairs of variables are analysed jointly. The code in the R language for every step of the computations is given, as well as the results of each computation.application/pdfengL'accés als continguts d'aquest document queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative CommonsComputation of multiple correspondence analysis, with code in Rinfo:eu-repo/semantics/workingPaperadjustment of principal inertiasburt matrixcorrespondence analysismultiple correspondence analysisr languagesingular value decompositionsubset analysisStatistics, Econometrics and Quantitative Methodsinfo:eu-repo/semantics/openAccess