Bogdanov, DmitryPorter, AlastairUrbano, JuliánSchreiber, Hendrik2018-11-132018-11-132018Bogdanov D, Porter A, Urbano J, Schreiber H. The MediaEval 2018 AcousticBrainz genre task: Content-based music genre recognition from multiple sources. In: Larson M, Arora P, Demarty CH, Riegler M, Bischke B, Dellandrea E, Lux M, Porter A, Jones GJF. MediaEval 2018 Multimedia Benchmark Workshop Working Notes Proceedings of the MediaEval 2018 Workshop. 2018 Oct 29-31; Sophia Antipolis, France. Aachen: CEUR; 2018. [3] p.http://hdl.handle.net/10230/35744Comunicació presentada al MediaEval 2018 Workshop celebrat a Sophia Antipolis (França) del 29 al 31 d'octubre de 2018.This paper provides an overview of the AcousticBrainz Genre Task organized as part of the MediaEval 2018 Benchmarking Initiative for Multimedia Evaluation. The task is focused on content-based music genre recognition using genre annotations from multiple sources and large-scale music features data available in the AcousticBrainz database. The goal of our task is to explore how the same music pieces can be annotated differently by different communities following different genre taxonomies, and how this should be addressed by content-based genre recognition systems. We present the task challenges, the employed ground-truth information and datasets, and the evaluation methodology.application/pdfengCopyright © 2018 the authors.The MediaEval 2018 AcousticBrainz genre task: content-based music genre recognition from multiple sourcesinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/openAccess