Cuevas, Gemma de lasDür, W.Van den Nest, M.Martin-Delgado, Miguel Ángel2025-11-042025-11-042011de las Cuevas G, Dür W, Van den Nest M, Martin-Delgado MA. Quantum algorithms for classical lattice models. New J Phys. 2011 Sep 9;13(9):093021. DOI: 10.1088/1367-2630/13/9/0930211367-2630http://hdl.handle.net/10230/71752We give efficient quantum algorithms to estimate the partition function of (i) the six-vertex model on a two-dimensional (2D) square lattice, (ii) the Ising model with magnetic fields on a planar graph, (iii) the Potts model on a quasi-2D square lattice and (iv) the Z2 lattice gauge theory on a 3D square lattice. Moreover, we prove that these problems are BQP-complete, that is, that estimating these partition functions is as hard as simulating arbitrary quantum computation. The results are proven for a complex parameter regime of the models. The proofs are based on a mapping relating partition functions to quantum circuits introduced by Van den Nest et al (2009 Phys. Rev. A 80 052334) and extended here.application/pdfeng© IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. Published under a CC BY (Creative Commons Attribution) licence.AlgorismesComputació quànticaFísicaQuantum algorithms for classical lattice modelsinfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1088/1367-2630/13/9/093021info:eu-repo/semantics/openAccess