Ferraro, GabrielaWanner, LeoUniversitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions2024-03-162024-03-162012-10-032012-10-032012-07-20http://hdl.handle.net/10230/17072This thesis addresses the problem of the development of Natural Language Processing techniques for the extraction and generalization of compositional and functional relations from specialized written texts and, in particular, from patent claims. One of the most demanding tasks tackled in the thesis is, according to the state of the art, the semantic generalization of linguistic denominations of relations between object components and processes described in the texts. These denominations are usually verbal expressions or nominalizations that are too concrete to be used as standard labels in knowledge representation forms -as, for example, “A leads to B”, and “C provokes D”, where “leads to” and “provokes” both express, in abstract terms, a cause, such that in both cases “A CAUSE B” and “C CAUSE D” would be more appropriate. A semantic generalization of the relations allows us to achieve a higher degree of abstraction of the relationships between objects and processes described in the claims and reduces their number to a limited set that is oriented towards relations as commonly used in the generic field of knowledge representation.Esta tesis se centra en el del desarrollo de tecnologías del Procesamiento del Lenguage Natural para la extracción y generalización de relaciones encontradas en textos especializados; concretamente en las reivindicaciones de patentes. Una de las tareas más demandadas de nuestro trabajo, desde el punto vista del estado de la cuestión, es la generalización de las denominaciones lingüísticas de las relaciones. Estas denominaciones, usualmente verbos, son demasiado concretas para ser usadas como etiquetas de relaciones en el contexto de la representación del conocimiento; por ejemplo, “A lleva a B”, “B es el resultado de A” están mejor representadas por “A causa B”. La generalización de relaciones permite reducir el n\'umero de relaciones a un conjunto limitado, orientado al tipo de relaciones utilizadas en el campo de la representación del conocimiento.Programa de doctorat en Tecnologies de la Informació i les Comunicacions159 p.application/pdfapplication/pdfengADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.info:eu-repo/semantics/openAccessTowards deep content extraction from specialized discourse : the case of verbal relations in patent claimsinfo:eu-repo/semantics/doctoralThesisArtificial intelligenceNatural language processingRelation extractionLinguistic dependencyDeep syntactic parsingSurface syntactic parsingValency structureRelation generalizationRelation clusteringRelation cluster labelingText simplificationPatent processingPatent claim processingMeaning-Text TheoryMachine learning81