Leuraud, KlerviRichardson, David B.Cardis, ElisabethDaniels, Robert D.Gillies, MichaelHaylock, RichardMoissonnier, MonikaSchubauer-Berigan, Mary K.Thierry-Chef, IsabelleKesminiene, AusreleLaurier, Dominique2022-06-012022-06-012021Leuraud K, Richardson DB, Cardis E, Daniels RD, Gillies M, Haylock R, Moissonnier M, Schubauer-Berigan MK, Thierry-Chef I, Kesminiene A, Laurier D. Risk of cancer associated with low-dose radiation exposure: comparison of results between the INWORKS nuclear workers study and the A-bomb survivors study. Radiat Environ Biophys. 2021 Mar;60(1):23-39. DOI: 10.1007/s00411-020-00890-70301-634Xhttp://hdl.handle.net/10230/53333The Life Span Study (LSS) of Japanese atomic bomb survivors has served as the primary basis for estimates of radiation-related disease risks that inform radiation protection standards. The long-term follow-up of radiation-monitored nuclear workers provides estimates of radiation-cancer associations that complement findings from the LSS. Here, a comparison of radiation-cancer mortality risk estimates derived from the LSS and INWORKS, a large international nuclear worker study, is presented. Restrictions were made, so that the two study populations were similar with respect to ages and periods of exposure, leading to selection of 45,625 A-bomb survivors and 259,350 nuclear workers. For solid cancer, excess relative rates (ERR) per gray (Gy) were 0.28 (90% CI 0.18; 0.38) in the LSS, and 0.29 (90% CI 0.07; 0.53) in INWORKS. A joint analysis of the data allowed for a formal assessment of heterogeneity of the ERR per Gy across the two studies (P = 0.909), with minimal evidence of curvature or of a modifying effect of attained age, age at exposure, or sex in either study. There was evidence in both cohorts of modification of the excess absolute risk (EAR) of solid cancer by attained age, with a trend of increasing EAR per Gy with attained age. For leukemia, under a simple linear model, the ERR per Gy was 2.75 (90% CI 1.73; 4.21) in the LSS and 3.15 (90% CI 1.12; 5.72) in INWORKS, with evidence of curvature in the association across the range of dose observed in the LSS but not in INWORKS; the EAR per Gy was 3.54 (90% CI 2.30; 5.05) in the LSS and 2.03 (90% CI 0.36; 4.07) in INWORKS. These findings from different study populations may help understanding of radiation risks, with INWORKS contributing information derived from cohorts of workers with protracted low dose-rate exposures.application/pdfeng© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.Risk of cancer associated with low-dose radiation exposure: comparison of results between the INWORKS nuclear workers study and the A-bomb survivors studyinfo:eu-repo/semantics/articlehttp://dx.doi.org/10.1007/s00411-020-00890-7A-bomb survivorsCancerEpidemiologyIonizing radiationLow doseLow dose-rateNuclear workersinfo:eu-repo/semantics/openAccess