Westera, MatthijsAmidei, JacopoMayol, Laia2021-02-032021-02-032020Westera M, Amidei J, Mayol L. Similarity or deeper understanding?: analyzing the TED-Q dataset of evoked questions. In: Scott D, Bel N, Zong C, editors. Proceedings of the 28th International Conference on Computational Linguistics; 2020 Dec 8-13; Barcelona, Spain. Stroudsburg (PA): ACL; 2020. p. 5004-12.http://hdl.handle.net/10230/46321Comunicació presentada al 28th International Conference on Computational Linguistics celebrat del 8 al 13 de desembre de 2020 de manera virtual.We take a close look at a recent dataset of TED-talks annotated with the questions they implicitly evoke, TED-Q (Westera et al., 2020). We test to what extent the relation between a discourse and the questions it evokes is merely one of similarity or association, as opposed to deeper semantic/pragmatic interpretation. We do so by turning the TED-Q dataset into a binary classification task, constructing an analogous task from explicit questions we extract from the BookCorpus (Zhu et al., 2015), and fitting a BERT-based classifier alongside models based on different notions of similarity. The BERT-based classifier, achieving close to human performance, outperforms all similarity-based models, suggesting that there is more to identifying true evoked questions than plain similarity.application/pdfeng© ACL, Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/)Similarity or deeper understanding?: analyzing the TED-Q dataset of evoked questionsinfo:eu-repo/semantics/conferenceObjectinfo:eu-repo/semantics/openAccess