Welcome to the UPF Digital Repository

Development and validation of a risk score for predicting non-adherence to antiretroviral therapy

Show simple item record

dc.contributor.author Acin, Pablo
dc.contributor.author Luque Pardos, Sònia
dc.contributor.author Subirana Cachinero, Isaac
dc.contributor.author Vila, Joan
dc.contributor.author Fernández-Sala, Xènia
dc.contributor.author Guelar Grinberg, Ana
dc.contributor.author Antonio, Marta de
dc.contributor.author Arrieta Aldea, Itziar
dc.contributor.author Knobel Freud, Hernando
dc.date.accessioned 2024-02-20T07:29:18Z
dc.date.available 2024-02-20T07:29:18Z
dc.date.issued 2023
dc.identifier.citation Acin P, Luque S, Subirana I, Vila J, Fernández-Sala X, Guelar A, Antonio-Cuscó M, Arrieta I, Knobel H. Development and validation of a risk score for predicting non-adherence to antiretroviral therapy. AIDS Res Hum Retroviruses. 2023 Oct;39(10):533-40. DOI: 10.1089/AID.2022.0147
dc.identifier.issn 0889-2229
dc.identifier.uri http://hdl.handle.net/10230/59170
dc.description.abstract Several patient-related factors that influence adherence to antiretroviral therapy (ART) have been described. However, studies that propose a practical and simple tool to predict nonadherence after ART initiation are still scarce. In this study, we develop and validate a score to predict the risk of nonadherence in people starting ART. The model/score was developed and validated using a cohort of people living with HIV starting ART at the Hospital del Mar, Barcelona, between 2012 and 2015 (derivation cohort) and between 2016 and 2018 (validation cohort),. Adherence was evaluated every 2 months using both pharmacy refills and patient self-reports. Nonadherence was defined as taking <90% of the prescribed dose and/or ART interruption for more than 1 week. Predictive factors for nonadherence were identified by logistic regression. Beta coefficients were used to develop a predictive score. Optimal cutoffs were identified using the bootstrapping methodology, and performance was evaluated with the C statistic. Our study is based on 574 patients: 349 in the derivation cohort and 225 in the validation cohort. A total of 104 patients (29.8%) of the derivation cohort were nonadherent. Nonadherence predictors were patient prejudgment; previous medical appointment failures; cultural and/or idiomatic barriers; heavy alcohol use; substance abuse; unstable housing; and severe mental illness. The cutoff point (receiver operating characteristic curve) for nonadherence was 26.3 (sensitivity 0.87 and specificity 0.86). The C statistic (95% confidence interval) was 0.91 (0.87-0.94). These results were consistent with those predicted by the score in the validation cohort. This easy-to-use, highly sensitive, and specific tool could be easily used to identify patients at highest risk for nonadherence, thus allowing resource optimization and achieving optimal treatment goals.
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Mary Ann Liebert, Inc
dc.relation.ispartof AIDS Res Hum Retroviruses. 2023 Oct;39(10):533-40
dc.rights © Pablo Acin et al. 2023; Published by Mary Ann Liebert, Inc. This Open Access article is distributed under the terms of the Creative Commons License [CC-BY] (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
dc.rights.uri http://creativecommons.org/licenses/by/4.0
dc.title Development and validation of a risk score for predicting non-adherence to antiretroviral therapy
dc.type info:eu-repo/semantics/article
dc.identifier.doi http://dx.doi.org/10.1089/AID.2022.0147
dc.subject.keyword Adherence
dc.subject.keyword Antiretroviral therapy
dc.subject.keyword Risk factors
dc.subject.keyword Score
dc.subject.keyword Validation
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/publishedVersion

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

In collaboration with Compliant to Partaking