Welcome to the UPF Digital Repository

Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases



Ecological validity of a deep learning algorithm to detect gait events from real-life walking bouts in mobility-limiting diseases

Thumbnail
Document Type: Article
Version: Published version
Date: 2023
This document is associated with a Creative Common license © 2023 Romijnders, Salis, Hansen, Küderle, Paraschiv-Ionescu, Cereatti, Alcock, Aminian, Becker, Bertuletti, Bonci, Brown, Buckley, Cantu, Carsin, Caruso, Caulfield, Chiari, D'Ascanio, Del Din, Eskofier, Fernstad, Fröhlich, Garcia Aymerich, Gazit, Hausdorff, Hiden, Hume, Keogh, Kirk, Kluge, Koch, Mazzà, Megaritis, Micó-Amigo, Müller, Palmerini, Rochester, Schwickert, Scott, Sharrack, Singleton, Soltani, Ullrich, Vereijken, Vogiatzis, Yarnall, Schmidt and Maetzler. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (http://creativecommons.org/licenses/by/4.0/). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Thumbnail

This item appears in the following Collection(s)

Search DSpace


Advanced Search

Browse

My Account

Statistics

In collaboration with Compliant to Partaking