Welcome to the UPF Digital Repository

EvolClust: automated inference of evolutionary conserved gene clusters in eukaryotes

Show simple item record

dc.contributor.author Marcet Houben, Marina
dc.contributor.author Gabaldón Estevan, Juan Antonio, 1973-
dc.date.accessioned 2020-03-17T07:33:39Z
dc.date.available 2020-03-17T07:33:39Z
dc.date.issued 2020
dc.identifier.citation Marcet-Houben M, Gabaldón T. EvolClust: automated inference of evolutionary conserved gene clusters in eukaryotes. Bioinformatics. 2020 Feb 15; 36(4): 1265-1266. DOI: 10.1093/bioinformatics/btz706
dc.identifier.issn 1367-4803
dc.identifier.uri http://hdl.handle.net/10230/43909
dc.description.abstract MOTIVATION: The evolution and role of gene clusters in eukaryotes is poorly understood. Currently, most studies and computational prediction programs limit their focus to specific types of clusters, such as those involved in secondary metabolism. RESULTS: We present EvolClust, a python-based tool for the inference of evolutionary conserved gene clusters from genome comparisons, independently of the function or gene composition of the cluster. EvolClust predicts conserved gene clusters from pairwise genome comparisons and infers families of related clusters from multiple (all versus all) genome comparisons. AVAILABILITY AND IMPLEMENTATION: https://github.com/Gabaldonlab/EvolClust/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
dc.description.sponsorship This work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (MEIC) for the EMBL partnership and grants ‘Centro de Excelencia Severo Ochoa’ SEV-2012-0208 and BFU2015-67107 cofounded by European Regional Development Fund (ERDF); from the CERCA Programme/Generalitat de Catalunya; from the Catalan Research Agency (AGAUR) SGR857 and grant from the European Union’s Horizon 2020 research and innovation programme under the grant agreement ERC-2016-724173 the Marie Sklodowska-Curie grant agreement No H2020-MSCA-ITN-2014-642095. The group also receives support from a INB Grant (PT17/0009/0023–ISCIII-SGEFI/ERDF)
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Oxford University Press
dc.rights © 2019 Marina Marcet-Houben, Toni Gabaldón. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License,which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited
dc.rights.uri http://creativecommons.org/licenses/by-nc/4.0/
dc.subject.other Genètica
dc.subject.other Genòmica
dc.subject.other Gens
dc.subject.other Cèl·lules eucariotes
dc.title EvolClust: automated inference of evolutionary conserved gene clusters in eukaryotes
dc.type info:eu-repo/semantics/article
dc.identifier.doi http://dx.doi.org/10.1093/bioinformatics/btz706
dc.relation.projectID info:eu-repo/grantAgreement/ES/1PE/BFU2015-67107
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/724173
dc.relation.projectID info:eu-repo/grantAgreement/EC/H2020/642095
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/publishedVersion


This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

Compliant to Partaking