Welcome to the UPF Digital Repository

Genomic response to selection for predatory behavior in a mammalian model of adaptive radiation

Show simple item record

dc.contributor.author Konczal, Mateusz
dc.contributor.author Koteja, Pawel
dc.contributor.author Orloska-Feuer, Patrycja
dc.contributor.author Radwan, Jacek
dc.contributor.author Sadowska, Edyta T.
dc.contributor.author Babik, Wieslaw
dc.date.accessioned 2017-11-02T11:01:53Z
dc.date.available 2017-11-02T11:01:53Z
dc.date.issued 2016
dc.identifier.citation Konczal M, Koteja P, Orlowska-Feuer P, Radwan J, Sadowska ET, Babik W. Genomic response to selection for predatory behavior in a mammalian model of adaptive radiation. Mol Biol Evol. 2016 Sep;33(9):2429-40. DOI: 10.1093/molbev/msw121
dc.identifier.issn 0737-4038
dc.identifier.uri http://hdl.handle.net/10230/33127
dc.description.abstract If genetic architectures of various quantitative traits are similar, as studies on model organisms suggest, comparable selection pressures should produce similar molecular patterns for various traits. To test this prediction, we used a laboratory model of vertebrate adaptive radiation to investigate the genetic basis of the response to selection for predatory behavior and compare it with evolution of aerobic capacity reported in an earlier work. After 13 generations of selection, the proportion of bank voles (Myodes [=Clethrionomys] glareolus) showing predatory behavior was five times higher in selected lines than in controls. We analyzed the hippocampus and liver transcriptomes and found repeatable changes in allele frequencies and gene expression. Genes with the largest differences between predatory and control lines are associated with hunger, aggression, biological rhythms, and functioning of the nervous system. Evolution of predatory behavior could be meaningfully compared with evolution of high aerobic capacity, because the experiments and analyses were performed in the same methodological framework. The number of genes that changed expression was much smaller in predatory lines, and allele frequencies changed repeatably in predatory but not in aerobic lines. This suggests that more variants of smaller effects underlie variation in aerobic performance, whereas fewer variants of larger effects underlie variation in predatory behavior. Our results thus contradict the view that comparable selection pressures for different quantitative traits produce similar molecular patterns. Therefore, to gain knowledge about molecular-level response to selection for complex traits, we need to investigate not only multiple replicate populations but also multiple quantitative traits.
dc.description.sponsorship This work was supported by the Polish Ministry of Science and Higher Education (N N303 816740 to P.K.) and Jagiellonian University (DS/WBINOZ/INOS/757 to P.K. and DS/WBINOZ/INOS/762 to W.B.). M.K. acknowledges support of the Spanish Ministry of Economy and Competitiveness, “Centro de Excelencia Severo Ochoa 2013-2017”, SEV-2012-0208
dc.format.mimetype application/pdf
dc.language.iso eng
dc.publisher Oxford University Press
dc.relation.ispartof Molecular Biology and Evolution. 2016 Sep;33(9):2429-40
dc.rights © Oxford University Press. This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Molecular Biology and Evolution following peer review. The definitive publisher-authenticated version Konczal M, Koteja P, Orlowska-Feuer P, Radwan J, Sadowska ET, Babik W. Genomic response to selection for predatory behavior in a mammalian model of adaptive radiation. Mol Biol Evol. 2016 Sep; 33(9): 2429-40 is available online at: http://dx.doi.org/10.1093/molbev/msw121
dc.subject.other Adaptació (Fisiologia)
dc.subject.other Múrids -- Genètica
dc.subject.other Depredació (Biologia)
dc.title Genomic response to selection for predatory behavior in a mammalian model of adaptive radiation
dc.type info:eu-repo/semantics/article
dc.identifier.doi http://dx.doi.org/10.1093/molbev/msw121
dc.rights.accessRights info:eu-repo/semantics/openAccess
dc.type.version info:eu-repo/semantics/acceptedVersion

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

In collaboration with Compliant to Partaking