dc.contributor.author |
Oramas, Sergio |
dc.contributor.author |
Espinosa-Anke, Luis |
dc.contributor.author |
Lawlor, Aonghus |
dc.contributor.author |
Serra, Xavier |
dc.contributor.author |
Saggion, Horacio |
dc.date.accessioned |
2017-10-23T09:14:04Z |
dc.date.available |
2017-10-23T09:14:04Z |
dc.date.issued |
2016 |
dc.identifier.citation |
Oramas S, Espinosa-Anke L, Lawlor A, Serra X, Saggion H. Exploring customer reviews for music genre classification and evolutionary studies. In: Devaney J, Mandel MI, Turnbull D, Tzanetakis G, editors. ISMIR 2016. Proceedings of the 17th International Society for Music Information Retrieval Conference; 2016 Aug 7-11; New York City (NY). [Canada]: ISMIR; 2016. p. 150-6. |
dc.identifier.uri |
http://hdl.handle.net/10230/33063 |
dc.description |
Comunicació presentada a la 17th International Society for Music Information Retrieval Conference (ISMIR 2016), celebrada els dies 7 a 11 d'agost de 2016 a Nova York, EUA. |
dc.description.abstract |
In this paper, we explore a large multimodal dataset of about 65k albums constructed from a combination of Amazon customer reviews, MusicBrainz metadata and AcousticBrainz audio descriptors. Review texts are further enriched with named entity disambiguation along with polarity information derived from an aspect-based sentiment analysis framework. This dataset constitutes the cornerstone of two main contributions: First, we perform experiments on music genre classification, exploring a variety of feature types, including semantic, sentimental and acoustic features. These experiments show that modeling semantic information contributes to outperforming strong bag-of-words baselines. Second, we provide a diachronic study of the criticism of music genres via a quantitative analysis of the polarity associated to musical aspects over time. Our analysis hints at a potential correlation between key cultural and geopolitical events and the language and evolving sentiments found in music reviews. |
dc.description.sponsorship |
This work was partially funded by the Spanish Ministry of Economy and Competitiveness under the Maria de Maeztu Units of Excellence Programme (MDM-2015-0502), by the TUNER project (TIN2015-65308-C5-5-R, MINECO/FEDER, UE), by the Keystone COST Action IC1302 and by the Insight Centre for Data Analytics under grant number SFI/12/RC/2289. |
dc.format.mimetype |
application/pdf |
dc.language.iso |
eng |
dc.publisher |
International Society for Music Information Retrieval (ISMIR) |
dc.relation.ispartof |
Devaney J, Mandel MI, Turnbull D, Tzanetakis G, editors. ISMIR 2016. Proceedings of the 17th International Society for Music Information Retrieval Conference; 2016 Aug 7-11; New York City (NY). [Canada]: ISMIR; 2016. p. 150-6. |
dc.relation.isreferencedby |
http://hdl.handle.net/10230/34325 |
dc.rights |
© Sergio Oramas, Luis Espinosa-Anke, Aonghus Lawlor, Xavier Serra, Horacio Saggion. Licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0). Attribution: Sergio Oramas, Luis Espinosa-Anke, Aonghus Lawlor, Xavier Serra, Horacio Saggion. “Exploring Customer Reviews for Music Genre Classification and Evolutionary Studies”, 17th International Society for Music Information Retrieval Conference, 2016. |
dc.rights.uri |
http://creativecommons.org/licenses/by/4.0/ |
dc.subject.other |
Música -- Anàlisi |
dc.title |
Exploring customer reviews for music genre classification and evolutionary studies |
dc.type |
info:eu-repo/semantics/conferenceObject |
dc.relation.projectID |
info:eu-repo/grantAgreement/ES/1PE/TIN2015-65308-C5-5-R |
dc.rights.accessRights |
info:eu-repo/semantics/openAccess |
dc.type.version |
info:eu-repo/semantics/publishedVersion |