We study experimentally the synchronization dynamics of two semiconductor lasers coupled unidirectionally via two different delayed paths. The emitter laser operates in a chaotic regime characterized by low-frequency fluctuations due to optical feedback and induces a synchronized dynamical activity in the receiver laser, which operates in the continuous-wave regime when uncoupled. Different delays in the two coupling paths lead to the coexistence of two time lags in the synchronized dynamics of the ...
We study experimentally the synchronization dynamics of two semiconductor lasers coupled unidirectionally via two different delayed paths. The emitter laser operates in a chaotic regime characterized by low-frequency fluctuations due to optical feedback and induces a synchronized dynamical activity in the receiver laser, which operates in the continuous-wave regime when uncoupled. Different delays in the two coupling paths lead to the coexistence of two time lags in the synchronized dynamics of the oscillators. This dual-lag synchronization degrades the average synchronization quality of the system of coupled lasers and hinders the transmission of information between them. Numerical simulation results agree with the experimental observations, and allow us to explore this phenomenon in a wide parameter range, and quantify the degree of signal transmission degradation caused by this chaotic path-delay interference.
+