Welcome to the UPF Digital Repository

Some problems on temporally consistent video editing and object recognition

Show simple item record

dc.contributor.author Sadek, Rida
dc.contributor.other Caselles, Vicente
dc.contributor.other Universitat Pompeu Fabra. Departament de Tecnologies de la Informació i les Comunicacions
dc.date.accessioned 2024-03-16T02:34:48Z
dc.date.available 2024-03-16T02:34:48Z
dc.date.issued 2013-02-04T12:40:34Z
dc.date.issued 2013-02-04T12:40:34Z
dc.date.issued 2012-12-07
dc.identifier http://hdl.handle.net/10803/101413
dc.identifier B. 4560-2013
dc.identifier.uri http://hdl.handle.net/10230/20294
dc.description.abstract Video editing and object recognition are two significant fields in computer vi- sion: the first has remarkably assisted digital production and post-production tasks of a digital video footage; the second is considered fundamental to image classification or image based search in large databases (e.g. the web). In this thesis, we address two problems, namely we present a novel formulation that tackles video editing tasks and we develop a mechanism that allows to generate more robust descriptors for objects in an image. Concerning the first problem, this thesis proposes two variational models to perform temporally coherent video editing. These models are applied to change an object’s (rigid or non-rigid) texture throughout a given video sequence. One model is based on propagating color information from a given frame (or be- tween two given frames) along the motion trajectories of the video; while the other is based on propagating gradient domain information. The models we present in this thesis require minimal user intervention and they automatically accommodate for illumination changes in the scene. Concerning the second problem, this thesis addresses the problem of affine invariance in object recognition. We introduce a way to generate geometric affine invariant quantities that are used in the construction of feature descrip- tors. We show that when these quantities are used they do indeed achieve a more robust recognition than the state of the art descriptors. i
dc.description.abstract La edición de vídeo y el reconocimiento de objetos son dos áreas fundamentales en el campo de la visión por computador: la primera es de gran utilidad en los procesos de producción y post-producción digital de vídeo; la segunda es esencial para la clasificación o búsqueda de imágenes en grandes bases de datos (por ejemplo, en la web). En esta tesis se acometen ambos problemas, en concreto, se presenta una nueva formulación que aborda las tareas de edición de vídeo y se desarrolla un mecanismo que permite generar descriptores más robustos para los objetos de la imagen. Con respecto al primer problema, en esta tesis se proponen dos modelos variacionales para llevar a cabo la edición de vídeo de forma coherente en el tiempo. Estos modelos se aplican para cambiar la textura de un objeto (rígido o no) a lo largo de una secuencia de vídeo dada. Uno de los modelos está basado en la propagación de la información de color desde un determinado cuadro de la secuencia de vídeo (o entre dos cuadros dados) a lo largo de las trayectorias de movimiento del vídeo. El otro modelo está basado en la propagación de la información en el dominio del gradiente. Ambos modelos requieren una intervención mínima por parte del usuario y se ajustan de manera automática a los cambios de iluminación de la escena. Con respecto al segundo problema, esta tesis aborda el problema de la invariancia afín en el reconocimiento de objetos. Se introduce un nuevo método para generar cantidades geométricas afines que se utilizan en la generación de descriptores de características. También se demuestra que el uso de dichas cantidades proporciona mayor robustez al reconocimiento que los descriptores existentes actualmente en el estado del arte.
dc.description.abstract Programa de doctorat en Tecnologies de la Informació i les Comunicacions
dc.format 178 p.
dc.format application/pdf
dc.format application/pdf
dc.language.iso eng
dc.publisher Universitat Pompeu Fabra
dc.rights ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.
dc.rights info:eu-repo/semantics/openAccess
dc.source TDX (Tesis Doctorals en Xarxa)
dc.title Some problems on temporally consistent video editing and object recognition
dc.type info:eu-repo/semantics/doctoralThesis
dc.type info:eu-repo/semantics/publishedVersion
dc.date.modified 2024-03-15T10:58:05Z
dc.subject.keyword Video editing
dc.subject.keyword Gradient based
dc.subject.keyword Variational method
dc.subject.keyword Temporal Consistency
dc.subject.keyword Convective derivative
dc.subject.keyword Numerical method
dc.subject.keyword Image matching
dc.subject.keyword Affine invariance
dc.subject.keyword Image descriptors
dc.subject.keyword Object recognition
dc.subject.keyword 62


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics

In collaboration with Compliant to Partaking