La representació de les molècules per mitjà de descriptors moleculars és la base de moltes de les eines computacionals pel disseny de fàrmacs. Aquests mètodes computacionals es basen en l'abstracció de l'estructura química per resumir aquelles característiques rellevants sent al mateix temps eficients en la comparació de grans llibreries de molècules. Una característica molt important d'aquests descriptors és la seva habilitat de capturar la informació rellevant per la interacció amb qualsevol proteïna ...
La representació de les molècules per mitjà de descriptors moleculars és la base de moltes de les eines computacionals pel disseny de fàrmacs. Aquests mètodes computacionals es basen en l'abstracció de l'estructura química per resumir aquelles característiques rellevants sent al mateix temps eficients en la comparació de grans llibreries de molècules. Una característica molt important d'aquests descriptors és la seva habilitat de capturar la informació rellevant per la interacció amb qualsevol proteïna independentment de l'esquelet del compost. Això permet detectar com a similars qualsevol parella de compostos amb les mateixes característiques ordenades de la mateixa manera al voltant d'esquelets essencialment diferents, una propietat a la qual hom es refereix com a "scaffold hopping". Tenint en compte això, un nou conjunt de descriptors basat en la distribució de parelles de característiques farmacofòriques centrades en els àtoms per mitjà del concepte de teoria de la informació de l'entropia de Shannon [1], anomenats SHED, s'han desenvolupat.<br/>Aquests descriptors han sigut usats amb èxit en nombroses aplicacions importants en el procés de descoberta de fàrmacs. Després de la implementació de noves tecnologies in vitro com ara el "high-throughput screening" i la química combinatòria, la capacitat de sintetitzar i assajar compostos va augmentar exponencialment però alhora la necessitat d'una selecció racional dels compostos va fer-se patent. La priorització dels compostos en termes de la predicció de la seva probabilitat de mostrar la activitat desitjada és per tant una de les primeres aplicacions del perfilat virtual basat en lligands usant els descriptors SHED.<br/>En realitat, aquesta metodologia es pot estendre al punt de vista quimiogenòmic del procés de descoberta de fàrmacs, usant els descriptors per generar models basats en ligands de totes les proteïnes amb informació de lligands. Aquesta aproximació més ampla, el perfilat virtual de proteïnes, és un pas més per completar la matriu d'activitat entre tots els possibles compostos químics i totes les proteïnes rellevants. A més, una anàlisi més aprofundida d'aquesta matriu completa generada per mitjà del perfilat virtual de proteïnes pot dur-nos a una perspectiva de farmacologia en xarxa del procés de descoberta de fàrmacs. Aquesta direcció pot ser seguida afegint a aquesta informació de lligands i proteïnes la informació relativa a rutes de reaccions i anàlisi de sistemes, donant lloc a l'anomenada biologia química de sistemes que pot ajudar a entendre els processos biològics com un conjunt i a identificar de manera més racional noves i prometedores dianes terapèutiques.
+
The representation of molecules by means of molecular descriptors is the basis of most of the computational tools for drug design. These computational methods are based on the abstraction from the chemical structure to summarize its relevant features while being efficient in the comparison of large molecule libraries. A very important feature of these descriptors is their ability to capture the information relevant for the interaction with any target independently from the scaffold of the compound. ...
The representation of molecules by means of molecular descriptors is the basis of most of the computational tools for drug design. These computational methods are based on the abstraction from the chemical structure to summarize its relevant features while being efficient in the comparison of large molecule libraries. A very important feature of these descriptors is their ability to capture the information relevant for the interaction with any target independently from the scaffold of the compound. This will allow detecting as similar any two compounds with the same features arranged in the same way around essentially different scaffolds, a property referred to as scaffold hopping. With this in mind, a new set of descriptors based on the distribution of atom-centred pharmacophoric feature pairs by means of the information theory concept of Shannon entropy [1], called SHED, have been developed.<br/>These descriptors have been successfully used in a number of applications important in the drug discovery process. After the implementation of novel in vitro technologies like high-throughput screening and combinatorial chemistry, the capacity of synthesizing and testing compounds increased exponentially but the need for a rational selection of the compounds arose as well. The prioritisation of compounds in terms of their predicted chances of displaying the targeted activity is thus one of the first applications of the ligand-based virtual ligand screening based on SHED descriptors. This application has shown very good results, both in terms of enrichment of actives in the hit list and in terms of scaffold hopping ability, i.e. the novelty of the scaffolds of the found actives in the top ranked compounds.<br/>Actually, this methodology can be extended to a chemogenomics view of the drug discovery process, using the descriptors to build ligand-based models of all the proteins with any ligand information. This broader approach, the virtual target profiling, is a step towards completing the activity matrix between all possible chemical compounds and all relevant targets. Moreover, a deeper analysis of this complete matrix generated by virtual target profiling can lead us to a network pharmacology perspective of the drug discovery process. This direction can be further followed by adding to ligand-target information the information about pathways and systems approaches, leading to a systems chemical biology approach that could help understanding biological processes as a whole and identifying more rationally novel and promising drug targets.
+
Programa de doctorat en Biomedicina