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Abstract We give a characterization of the non-empty binary relations Â on a N∗-set A such that there exist
two morphisms of N∗-sets u1, u2 : A → R+ verifying u1 ≤ u2 and x Â y ⇔ u1(x) > u2(y). They
are called homothetic interval orders. If Â is a homothetic interval order, we also give a representation
of Â in terms of one morphism of N∗-sets u : A → R+ and a map σ : u−1(R∗+) × A → R∗+ such that

x Â y ⇔ σ(x, y)u(x) > u(y). The pairs (u1, u2) and (u, σ) are “uniquely” determined by Â, which allows
us to recover one from each other. We prove that Â is a semiorder (resp. a weak order) if and only if σ
is a constant map (resp. σ = 1). If moreover A is endowed with a structure of commutative semigroup,
we give a characterization of the homothetic interval orders Â represented by a pair (u,σ) so that u is
a morphism of semigroups.

Résumé On donne une caractérisation des relations binaires non vides Â sur un N∗-ensemble A telles qu’il existe
deux morphismes de N∗-ensembles u1, u2 : A → R+ vérifiant u1 ≤ u2 et x Â y ⇔ u1(x) > u2(y).
On les appelle des ordres intervalles homothétiques. Si Â est un ordre intervalle homothétique, on
donne aussi une représentation de Â à l’aide d’un morphisme de N∗-ensembles u : A → R+ et d’une
application σ : u−1(R∗+)× A → R∗+ tels que x Â y ⇔ σ(x, y)u(x) > u(y). Les paires (u1, u2) et (u,σ)
sont déterminées “de manière unique” par Â, ce qui nous permet de retrouver l’une à partir de l’autre.
On montre que Â est un semiordre (resp. un ordre faible) si et seulement si σ est une application
constante (resp. σ = 1). Si de plus A est muni d’une structure de semigroupe commutatif, on donne
une caractérisation des ordres intervalles homothétiques Â représentés par une paire (u,σ) telle que u
soit un morphisme de semigroupes.

AMS Class. 06A06, 06F05, 20M14

Key-words N∗-set, semigroup, weak order, semiorder, interval order, intransitive indifference, independence,
homothetic structure, representation.

Introduction Let us start with an example, which has been our main source of inspiration
for this work. Consider a two-armed-balance, the two arms of which not necessarily being of the
same length; such a balance is said to be biased. Let denote P1 and P2 its two pans. If the arms
are not of the same length, we assume that P1 is located at the end of the shortest arm. Suppose
also we are given a set A of objects to put on P1 and P2. We define as follows a binary relation
Â on A: x Â y if the balance tilts towards x when we put x on P1 and y on P2. This relation is
always asymmetric and transitive, but it is negatively transitive if and only if the two arms are of
the same length. However we can observe it is always strongly transitive: x Â y % z Â t ⇒ x Â t
with y % z ⇔ z 6Â y. In particular, Â is an interval order (cf. [F]). Furthemore, suppose that
A is endowed with a structure of N∗-set. Then the relation Â verifies the following property of
homothetic independence: x Â y ⇔ (mx Â my, ∀m ∈ N∗). We can continue to identify the
properties satisfied by Â. That naturally brings us to introduce the notion of homothetic structure
(cf. section 2). A homothetic structure is by definition a N∗-set A endowed with a binary relation Â
verifying five properties of compatibility, the most striking two being the homothetic independence
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introduced before and the following property : if x Â y, then ∃m ∈ N∗ such that mx Â (m+ 1)y.
A homothetic structure (A,Â) is called a homothetic interval order if the relation Â is assymmetric
and strongly transitive. The main goal of this paper is to give a caracterization of the homothetic
interval orders via their representations in R+.
So let (A,Â) be a non-empty homothetic interval order. If (A,Â) is obtained from a biased

balance as above, then we know there exists a morphism of N∗-sets u : A→ R+ (the mass) and a real
number α ∈ ]0, 1] (the ratio of the shortest arm to the longest one) such that x Â y ⇔ αu(x) > u(y).
It is this kind of result we are looking for here. Let us begin with the simplest case: Â is a homothetic
weak order; i.e., the relation Â is negatively transitive. Then we prove (proposition (4.1)) that
there exists a morphism of N∗-sets u : A→ R+, unique up to multiplication by a positive scalar,
such that x Â y ⇔ u(x) > u(y). Let us point out that no countable hypothesis on the quotient-set
A/∼ is needed here; where ∼ denotes the indifference relation on A defined by x ∼ y ⇔ x % y % x.
Now let us return to the general case. So as to simplify this introduction, we assume that

∀(x, y) ∈ A×A, the set Px,y = {mn−1 : (m,n) ∈ N∗×N∗, mx Â ny} is non-empty. Hence we can
put sx,y = infRPx,y ∈ R+. This invariant is one the most important tool of this work; we prove
in particular that x Â y ⇔ sx,y < 1. Let E(A) be the set of pairs (u,σ) made up of a morphism
of N∗-sets u : A→ R∗+ and a map σ : A/N∗×A/N∗ → R∗+ such that σ(x, y)σ(z, t) = σ(x, t)σ(z, y)
and σ(x, x) ≤ 1. The main result of this paper (propositions (6.1) and (7.2)) is stated as follows.

MAIN RESULT. – The four following conditions are equivalent:
(1) there exists a pair (u,σ) ∈ E(A) such that x Â y ⇔ σ(x, y)u(x) > u(y);
(2) there exists a morphism of N∗-sets u : A → R∗+ and a map γ : A/N∗ → ]0, 1] such that

x Â y⇔ γ(x)u(x) > γ(y)−1u(y);
(3) there exists two morphisms of N∗-sets u1, u2 : A → R∗+ such that u1 ≤ u2 and x Â y ⇔

u1(x) > u2(y);
(4) Â is a homothetic interval order.

Moreover, if Â is a homothetic interval order, then the pair (u, γ) of (2) is unique up to
multiplication of u by a positive scalar; and the pair (u1, u2) of (3) is unique up to multiplication
by a positive scalar (i.e., up to replacing it by (λu1,λu2) for a constant λ > 0).

The link between the two characterizations (2) and (3) is precisely described (corollary (7.4)):
if (u, γ) is a pair verifying (2), then the pair (u1, u2) = (γu, γ−1u) clearly verifies (3). Conversely,
if (u1, u2) is a pair verifying (3), then the pair (u, γ) = ((u1u2)

1
2 , (u1ū2)

1
2 ) verifies (2); where

ū2 : A→ R∗+ denotes the map defined by ū2(x) = u2(x)−1.
For i = 0, 1, 2, we define as follows a binary relation Âi on A:
- x Â0 y ⇔ sx,y < sy,x,
- x Â1 y ⇔ (mx % z Âmy, ∃(z,m) ∈ A×N∗),
- x Â2 y ⇔ (mx Â z %my, ∃(z,m) ∈ A×N∗).

Suppose Â is a homothetic interval order. Then we prove that for i = 0, 1, 2, Âi is a homothetic
weak order; i.e., a homothetic structure which is a weak order. Moreover, for any (i.e., for one)
pair (u, γ) verifying (2), u represents Â0; and for any (i.e., for one) pair (u1, u2) verifying (3), ui
represents Âi (i = 1, 2). Let denote γÂ : A/N∗ → ]0, 1] the map defined by γÂ = γ for any (i.e.,
for one) pair (u, γ) verifying (2). We prove (proposition (7.5)) that the following conditions are
equivalent:
- γÂ is a constant map;
- Â1=Â2;
- Â is a semiorder.
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We are also interested in the case of a commutative semigroup A (sections 5 and 8). A binary
relation Â on A is said to be ◦-independent if x Â y ⇔ (x ◦ z Â y ◦ z, ∀z ∈ A). We introduce a
weaker notion of compatibility between ◦ and Â, called ◦-pseudoindependence (cf. section 5). We
prove in particular (corollary (8.3)) that if (A, ◦) is a commutative semigroup endowed with a non-
empty homothetic interval order Â, then the weak order Â0 is ◦-independent if and only if Â is a
◦-pseudoindependent semiorder; we also remark (proposition (8.2)) that Â is ◦-pseudoindependent
if and only if for i = 1, 2, Âi is ◦-independent.
Let us make a few remarks about the nature of the results explained here above. Character-

ization (3) with the help of two maps u1 and u2, is the usual way to represent interval orders
([F] theorem 2.7); in fact, the homothetic weak orders Â1 and Â2 are simple variants of the weak
orders associated with Â by Fishburn ([F] theorem 2.6). Novelty resides in that the pair of mor-
phisms (u1, u2) is unique up to mutiplication by a positive constant. The advantage provided by
the characterization (2) is to put in a prominent position the twisting factor γÂ : A/N∗ → ]0, 1],
conveying explicitely the guiding line of our thinking: to consider a homothetic interval order Â
as a deformation of its associated homothetic weak order Â0. This characterization leads us to
contemplate a classification of homothetic interval orders in terms of their invariant γÂ, a task
left to a future work. Finally let us mention that this paper is a generalization of [LL], in which
we deal with the particular case of a N∗-set A so that ∀(x, y) ∈ A2, ∃(m,n) ∈ N∗× N∗ such that
mx = ny.

NOTATIONS, WRITING CONVENTIONS. The symbols R, Q, Z denote respectively the field of real
numbers, the field of rational numbers, and the ring of integers. For every part X ⊂ R and every
r ∈ R, we put X>r = {x ∈ X : x > r} and X≥r = {x ∈ X : x ≥ r}. Let R+ = R≥0, R∗+ = R>0,
N = Z≥0; and for every part X ⊂ R+, let X∗ = X ∩R∗+.
Let R∞+ = R+

`{∞} where ∞ denotes an arbitrary element not belonging to R. The standard
strict order > on R+ extends naturally to a strict order on R∞+ , still denoted >: for x ∈ R+, we
put ∞ > x, x ≯ ∞ and ∞ ≯ ∞. And for x, y ∈ R∞+ , we put x ≥ y ⇔ y ≯ x. For every part
X ⊂ R∞+ , we put

infR∞+ X =

½
infR+(X ∩R+) if X ∩R+ 6= ∅
∞ if not

.

Let (writing conventions) ∞−1 = 0, 0−1 = ∞ and ∅−1 = ∅. And for all non-empty parts X ⊂
R∞+ and Y, Z ⊂ R+, we put X−1 = {q−1 : q ∈ X} ⊂ R∞+ and Y Z = {yz : y ∈ Y, z ∈ Z} ⊂ R+.
At last, if A is a set, for n ∈ Z≥1, we put An = A× · · · ×A (n times).
1. Let A be a set endowed with a binary relation Â. Let denote ∼ and % the binary relations

on A defined as follows:
- x ∼ y ⇔ x 6Â y 6Â x,
- x % y ⇔ (x Â y or x ∼ y).

The relation Â is said to be:
(A) asymmetric if ∀(x, y) ∈ A2, we have x Â y⇒ y 6Â x;
(T) transitive if ∀(x, y, z) ∈ A3, we have x Â y Â z ⇒ x Â z;
(ST) strongly transitive if it satisfies (A) and ∀(x, y, z, t) ∈ A4, we have x Â y % z Â t⇒ x Â t;
(NT) negatively transitive if it satisfies (A) and the relation % is transitive;
(S) strict if ∀(x, y) ∈ A2, we have x % y % x⇒ x = y.

The relation Â satisfies (A) if and only if ∀(x, y) ∈ A2, we have x 6Â y ⇔ y % x. Then we deduce
that if Â satisfies (A), then it satisfies (NT) if and only if the two following equivalent properties
are true (x, y, z ∈ A):
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- ∀(x, y, z) ∈ A3, we have x Â y % z ⇒ x Â z;
- ∀(x, y, z) ∈ A3, we have x % y Â z ⇒ x Â z.

Thus we have the implications:

(NT)⇒ (ST)⇒ (T) & (A).

(1.1) REMARKS. – Suppose the relation Â satisfies (A). Then we have:
- Â satisfies (ST) if and only if ∀(x, y, z, t) ∈ A4, we have (x Â y and z Â t)⇒ (x Â t or z Â y);
- Â satisfies (NT) if and only if ∀(x, y, z, t) ∈ A4, we have x % y Â z % t⇒ x Â t;
- Â satifies (S) if and only if ∀(x, y) ∈ A2, we have x 6= y ⇒ (x Â y or y Â x);
- if Â satisfies (T), then it satisfies (NT) if and only if ∼ is an equivalence relation. ?

Using the terminology of Fishburn [F], we will say that the relation Â is a:
- interval order if it satisfies (ST);
- semiorder if it is an interval order and ∀(x, y, z, t) ∈ A4, we have x Â y Â z ⇒ (t Â z or x Â t);
- weak order if it satisfies (NT);
- strict order if it satisfies (NT) and (S).

It is easy to check that the definition of interval order given above coincides with the one of [F].
Thus we have the implications:

strict order⇒ weak order⇒ semiorder⇒ interval order.

(1.2) DEFINITION. – Let A be a set endowed with a non-empty binary relation Â (i.e., satisfying:
∃(x, y) ∈ A2 such that x Â y; in particular, A est non-empty), and let u be a map A → R+. We
say that u represents Â if ∀(x, y) ∈ A2, we have x Â y⇔ u(x) > u(y).

2. Let G be a commutative monoid (written multiplicatively); i.e., a set endowed with a
map G × G → G, (g, g0) 7→ gg0 and an element 1 = 1G ∈ G, such that ∀(g, g0, g00) ∈ G3, we
have (gg0)g00 = g(g0g00), gg0 = g0g and 1g = g. We call G-set a set A endowed with a map
G×A→ A, (g, x) 7→ gx such that ∀(g, g0, x) ∈ G2 ×A, we have g(g0x) = (gg0)x and 1x = x. If A
is a G-set, we denote A/G the quotient-set of A by the equivalence relation ∼G on A defined by:
- x ∼G y if and only if ∃(g, g0) ∈ G2 such that gx = g0y.
Let G be a commutative monoid, and let A be a G-set endowed with a binary relation Â. The

relation Â is said to be :
(GI) G-independent if ∀(x, y, g) ∈ A2 ×G, we have x Â y⇔ gx Â gy;
(GSS) G-strongly separable if ∀(x, y, z, t) ∈ A4 such that x Â y and z Â t, ∃(g, g0, g00) ∈ G3 such

that gx Â g0z % g00z Â gy;
(GC) G-coherent if ∀(x, y, z) ∈ A3 such that x Â y % z, ∃(g, g0) ∈ G2 such that gx Â g0z.
From section 1, we know that if the relation Â satisfies (NT), then it satisfies (GC). Suppose
moreover that G is endowed with a weak order >. Then the relation Â is said to be:
(GA) G-archimedean if ∀(x, y) ∈ A2 such that x Â y, ∃(g, g0) ∈ G2 such that g0 > g and gx Â g0y;
(GP) G-positive if ∀(x, y, g, g0) ∈ A2 ×G2 such that g > g0, we have x Â y ⇒ gx Â g0y.

(2.1) REMARK. – Let G be a commutative monoid endowed with a weak order >, and let A be a
G-set endowed with a binary relation Â. Let denote (GNI) (resp. (GNP)) the property obtained
by replacing the symbol Â by the symbol % in (GI) (resp. in (GP)). It is easy to prove that if Â
satisfies (A), (GI), (GA) and (GP), then % satisfies (GNI) and (GNP). ?
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(2.2) DEFINITION. – Let G be a commutative semigroup endowed with a weak order >. A binary
relation Â on a G-set A is called a:
- G-structure if it satisfies (GI), (GSS), (GC), (GA) and (GP);
- G-strict order if it is a G-structure and a strict order;
- G-weak order if it is a G-structure and a weak order;
- G-semiorder if it is a G-structure and a semiorder.
- G-interval order if it is a G-structure and an interval order.

The set N∗ is a monoid for the multiplication, and the standard strict order > on R+ induces by
restriction a strict order on N∗. To ease the notation, we will replace the index N∗ in (N∗I), (N∗SS)
(etc.), by an index “h” for homothetic; and we will call homothetic structure (resp. homothetic
strict order, etc.) a N∗-structure (resp. a N∗-strict order, etc.). In this paper, we intend to give
a characterization – by means of their representations in R+ – of the N∗-sets endowed with a
non-empty homothetic interval order. We will also give a characterization of the N∗-sets endowed
with a non-empty homothetic semiorder (resp. a non-empty homothetic weak order, a non-empty
homothetic strict order).

3. Let A be a N∗-set endowed with a binary relation Â. For x, y ∈ A, we denote Px,y = PÂx,y
and Qx,y = QÂx,y the subsets of Q>0 defined by

Px,y =
©
mn−1 : (m,n) ∈ (N∗)2, mx Â nyª ,

Qx,y =
©
mn−1 : (m,n) ∈ (N∗)2, mx % nyª ;

and we put sx,y = infR∞+ Px,y and rx,y = infR∞+ Qx,y. If Â satisfies (A), then ∀(x, y) ∈ A2, we have
the partitions of Q>0:

(3.1) Q>0 = Px,y
a
Q−1y,x = P−1y,x

a
Qx,y.

(3.2) LEMMA. – Let A be N∗-set endowed with a non-empty binary relation Â satisfying (hA) and
(hP). Then ∀(x, y) ∈ A2, we have Px,y = Q>sx,y .

Proof : Let x, y ∈ A, and put s = sx,y. If Px,y = ∅, then there is nothing to prove. Thus we
may (and do) assume that Px,y 6= ∅. From (hP), if q ∈ Px,y, then Q≥q ⊂ Px,y. If q ∈ Q>s, then
by definition of s, ∃q0 ∈ Px,y such that s ≤ q0 < q. Thus we have Q>s ⊂ Px,y. From (hA), we have
s ∈ Q>0 ⇒ s /∈ Px,y. From which we deduce that Px,y = Q>s.
If A is a N∗-set endowed with a binary relation Â, we denote A∗ = A∗Â and A∗∗ = A∗∗Â the

subsets of A defined as follows:

A∗ = {x ∈ A : Px,y 6= ∅, ∃y ∈ A},
A∗∗ = {x ∈ A : Px,y 6= ∅, ∀y ∈ A}.

(3.3) REMARKS. – Suppose the relation Â satisfies (hI). Then A∗ is a sub-N∗-set of A, and we
have:
- Â satisfies (hSS) if and only if ∀(x, y, z) ∈ A2 ×A∗ such that x Â y, ∃(p,m, n) ∈ (N∗)3 such
that px Âmz % nz Â py;

- if Â satisfies (hSS), then Â satisfies (hC) if and only if A∗∗ = A∗. ?
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(3.4) LEMMA. – Let A be a N∗-set endowed with a non-empty interval order Â satisfying (hI),
(hSS) and (hC), and let (x, a) ∈ (A∗)2. Then ∀y ∈ A, we have Px,y = Px,aQa,aPa,y.

Proof : Since A∗∗ = A∗, we have Px,a 6= ∅ and Pa,y 6= ∅. From (FT) and (hI), we have
Px,aQa,aPa,y ⊂ Px,y. And from (hSS) and (hI), we have Px,y ⊂ Px,aQa,aPa,y.
4. The following proposition characterizes the N∗-sets endowed with a homothetic weak order

(resp. a homothetic strict order).

(4.1) PROPOSITION. – Let A be a N∗-set endowed with a non-empty binary relation Â. The two
following conditions are equivalent:
(1) there exists a morphism of N∗-sets u : A→ R+ which represents Â;
(2) Â is a homothetic weak order.

Moreover, if Â is a homothetic weak order, then the morphism u of (1) is unique up to mutiplication
by a positive scalar. And Â is a homothetic strict order if and only if there exists an injective
morphism of N∗-sets u : A→ R+ which represents Â.

Proof : Suppose there exists a morphism of N∗-sets u : A→ R+ which represents Â. Clearly we
have u−1(u(A)∗) = A∗, and the relation % is given by: x % y ⇔ u(x) ≥ u(y). Then it is easy to
check (and left to the reader) that Â is a homothetic weak order.
Conversely, suppose Â is a homothetic weak order. Let (x, y) ∈ A2. From (hI) and (3.2), we

have x Â y ⇔ sx,y < 1. And from (3.1) and (3.2), we have Qy,x = Q≥ry,x with ry,x = s−1x,y.
Let us prove that Px,x 6= ∅ ⇔ sx,x = 1. The implication ⇐ is clear. Conversely, if sx,x 6= 1,

then rx,x < 1. Hence ∃(m,n) ∈ (N∗)2 such that m < n and mx % nx. From (hNI) and (hNP)
(cf. remark (2.1)), we have m2x % mnx % n2x, from which we obtain (using (NT)) m2x % n2x.
Therefore ∀k ∈ N∗, we have mkx % nkx. Since limk→+∞(mn )

k = 0, we obtain rx,x = 0; i.e.,
Px,x = ∅.
Since the relation Â is non-empty, we have A∗ 6= ∅. Choose an element a ∈ A∗. We have

Pa,a 6= ∅; i.e., sa,a = 1.
Suppose x Â y. From (3.3), we have Px,a 6= ∅, hence ra,x ∈ R>0. Let us prove that

sa,x = ra,x. From (3.4), we have Px,y = Px,aQa,aPa,y = Px,aPa,y, which implies the equality
sx,y = sx,asa,y = r−1a,xsa,y. Hence we have sa,y < ra,x because sx,y < 1. Seing that ra,x ∈ R+, we
have Qa,x 6= ∅. Let (m,n) ∈ (N∗)2 such that ma % nx. Since sa,a = 1 = sx,x, from (hP) and
(hNI), ∀p ∈ N∗ r {1}, we have (p + 1)ma Â pma % pnx Â (p − 1)nx; therefore (using (ST)), we
have (p+ 1)ma Â (p− 1)nx. Tending towards the limit, we obtain the inclusion Q>m

n
⊂ Pa,x. So

we have ra,x ≥ sa,x, which is an equality because Pa,x ⊂ Qa,x. Finally we obtain sa,x > sa,y.
We don’t suppose any more that x Â y.
Let us prove that ra,x ∈ R+ by reducing it to the absurd: suppose ra,x = ∞; i.e., suppose

Px,a = Q>0. Then (hI) we have x Â a; therefore (hSS), ∃(p,m, n) ∈ (N∗)3 such that
pa Â mx ≥ nx Â pb. In particular, p

m ∈ Pa,x; contradiction. Hence ra,x ∈ R+.
Let u = ua : A→ R+ be the map defined by u(x) = ra,x. From (hNI), ∀(z, t,m) ∈ A2 ×N∗, we

have Qz,mt = mQz,t. Hence u is a morphism of N∗-sets. Let us prove that x Â y ⇔ u(x) > u(y).
We have seen that if x Â y, then ra,x = sa,x > sa,y. But we have the inclusion Pa,y ⊂ Qa,y, from
which we deduce the implication: x Â y ⇒ u(x) > u(y). Conversely, suppose u(x) > u(y). Then
∃(m,n) ∈ (N∗)2 such that ma % ny and ma 6% nx. But ma 6% nx ⇔ nx Â ma, from which we
obtain nx Â ma % ny. From (NT) we have nx Â ny; hence (hI) we have x Â y. We thus proved
that u represents Â. And clearly, Â satisfies (S) if and only if u is injective.
We still have to prove the uniqueness property. Let v : A→ R+ be another morphism of N∗-sets
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such that ∀(x, y) ∈ A2, we have x Â y ⇔ v(x) > v(y). Since u−1(u(A)∗) = A∗ = v−1(v(A)∗),
∀x ∈ A, we have u(x) 6= 0⇔ v(x) 6= 0. Let λ : A→ R>0 be the map defined by

λ(x) =

½
u(x)−1v(x) if u(x) 6= 0
u(a)−1v(a) if not

.

Since u and v are morphisms of N∗-sets, λ factorizes through the quotient-set A/N∗. Suppose
∃x ∈ A such that λ(x) 6= λ(a). Put α = λ(a)λ(x)−1. First of all suppose α < 1. Then ∃q ∈ Q>0
such that αu(a)u(x)−1 < q < u(a)u(x)−1. In other words, we have v(a) < qv(x) and qu(x) < u(a),
contradiction. Now if α > 0, then ∃q0 ∈ Q>0 such that u(a)u(x)−1 < q0 < αu(a)u(x)−1; i.e.,
u(a) < q0u(x) and q0v(x) < v(a), contradiction. Hence α = 1, and λ is a constant map. This
completes the proof of the proposition.

(4.2) COROLLARY. – Let A be a N∗-set endowed with a non-empty homothetic weak order Â, and
let a ∈ A∗. Then the map A→ R+, x 7→ ra,x is a morphism of N∗-sets which represents Â.

5. Let (A, ◦) be a commutative semigroup; i.e., a set A endowed with a map A×A→ A, (x, y) 7→
x ◦ y such that ∀(x, y, z) ∈ A3, we have
- x ◦ (y ◦ z) = (x ◦ y) ◦ z (associativity),
- x ◦ y = y ◦ x (commutativity).

Let remark that A is a fortiori a N∗-set, for the operation of N∗ on A defined by the map
N∗ × A → A, (m,x) 7→ mx = x ◦ · · · ◦ x (m times). For all parts X, Y ⊂ A, we put
X ◦ Y = {x ◦ y : x ∈ X, y ∈ Y } ⊂ A
A binary relation Â on A is said to be:
(◦I) ◦-independent if ∀(x, y, z) ∈ A3, we have x Â y⇔ x ◦ z Â y ◦ z;
(◦PI) ◦-pseudoindependent if A∗ ◦ (ArA∗) ⊂ A∗ and ∀(x, y, z, t) ∈ A4, we have½

(x Â y, z Â t)⇒ x ◦ z Â y ◦ t
(x % y, z % t)⇒ x ◦ z % y ◦ t .

(5.1) PROPOSITION (variant of (4.1)). – Let (A, ◦) be a commutative semigroup endowed with a
non-empty binary relation Â. The three following conditions are equivalent:
(1) there exists a morphism of semigroups u : A→ R+ which represents Â;
(2) Â is a ◦-independent homothetic weak order;
(3) Â is a ◦-pseudoindependent homothetic weak order.

Moreover, if Â is a homothetic weak order, then the morphism u of (1) is unique up to multiplication
by a positive scalar.

Proof : The implication (1)⇒ (2) is clear.
Let us prove the implication (2)⇒ (3). Supposose Â is a ◦-independent homothetic weak order.

Let (x, y) ∈ A∗ × (ArA∗) such that x ◦ y ∈ ArA∗. Thus we have x Â x ◦ y. From (◦I), we have
x◦y Â (x◦y)◦y = x◦(2y) and y Â 2y, hence y ∈ A∗; contradiction. Therefore A∗◦(ArA∗) ⊂ A∗.
Then using (T) and (NT), we easily deduce that the relation Â is ◦-pseudoindependent. So we
have (2)⇒ (3).
Let us prove the implication (3)⇒ (1). Suppose Â is a ◦-pseudoindependent homothetic weak

order. Choose an element a ∈ A∗, and let u = ua : A → R+ be the morphism of N∗-sets defined
by u(x) = ra,x. From (4.3), u represents Â. Let (x, y) ∈ A2. If (m,n,m0, n0) ∈ (N∗)4 satisfies
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ma % nx and m0a % n0y, then from (◦PI), we have (nm0 +n0m)a % nn0(x ◦ y). Therefore we have
ra,x◦y ≤ m

n +
m0
n0 . From which we deduce that ra,x◦y ≤ ra,x+ ra,y; i.e., that u(x ◦ y) ≤ u(x)+u(y).

First of all suppose (x, y) ∈ (A∗)2. If (m,n,m0, n0) ∈ (N∗)4 is such that mx Â na et m0y Â n0a,
then from (◦PI), we have mm0(x ◦ y) Â (m0n + mn0)a. Hence we have sx◦y,a ≤ mm0

m0n+mn0 =

( nm + n0
m0 )−1. From which we deduce that ra,x◦y = s−1x◦y,a ≥ s−1x,a + s−1y,a = ra,x + ra,y; i.e., that

u(x ◦ y) ≥ u(x) + u(y). Hence we have u(x ◦ y) = u(x) = u(y).
Now suppose (x, y) ∈ (A r A∗)2. Then the inequality u(x ◦ y) ≤ u(x) + u(y) = 0 implies

u(x ◦ y) = 0. So we have u(x ◦ y) = 0 = u(x) + u(y).
Last of all suppose (x, y) ∈ A∗ × (ArA∗). Assume u(x ◦ y) < u(x) + u(y). Since u(y) = 0, we

have x Â x ◦ y. Hence (hP), ∃(m,n) ∈ (N∗)2 such that m > n and nx Â m(x ◦ y) = nx ◦ z with
z = (m − n)x ◦my. But (m − n)x ∈ A∗ and my ∈ A r A∗. Thus from (◦PI), we have z ∈ A∗.
Because (nx, z) ∈ (A∗)2, we have (cf. above) u(nx ◦ z) = u(nx) + u(z). But since nx Â nx ◦ z, we
also have u(nx) > u(nx ◦ z); contradiction. Hence we have u(x ◦ y) = u(x) + u(y).
Since x ◦ y = y ◦ x, the case (x, y) ∈ (ArA∗)×A∗ is already done.
So we proved that u is a morphism of semigroups. This completes the proof of the implication

(3)⇒ (1).
At last, the uniqueness property is a consequence of (4.1).

6. Let E be a set, and E0 ⊂ E be a subset. Let denote G(E0×E) the set of maps f : E0×E → R∗+
such that ∀(x0, y0, x, y) ∈ (E0)2×E2, we have f(x0, x0) ≤ 1 and f(x0, x)f(y0, y) = f(x0, y)f(y0, x). And
let denote G0(E0× E) ⊂ G(E0× E) the subset made up of maps f such that ∀(x0, y0) ∈ (E0)2, we
have f(x0, y0) = f(y0, x0). Let remark that if f ∈ G0(E0× E), then ∀(x0, y0) ∈ (E0)2, we have
f(x, y) = f(x, x)

1
2 f(y, y)

1
2 ≤ 1.

Let A be a N∗-set endowed with a binary relation Â satisfying (hI). Put Ā = A/N∗ and let
denote Ā∗ = Ā∗Â the subset of Ā defined by Ā∗ = A∗Â/N∗. We denote E(A,Â) the set of pairs
(u,σ) made up of a morphism of N∗-sets u : A → R+ and a map σ ∈ G(Ā∗× Ā); i.e., a map
σ ∈ G(A∗×A) such that ∀(x, y,m, n) ∈ A∗ ×A× (N∗)2, we have σ(mx,ny) = σ(x, y). We denote
E0(A,Â) ⊂ E(A,Â) the subset made up of pairs (u,σ) such that σ ∈ G0(Ā∗× Ā). At last, for
(u,σ) ∈ E(A,Â), we denote σ∗ the restriction σ|Ā∗×Ā∗ .
The following proposition characterizes the homothetic interval orders.

(6.1) PROPOSITION. – Let A be a N∗-set endowed with a non-empty binary relation Â. The two
following conditions are equivalent:
(1) there exists a pair (u,σ) ∈ E(A,Â) such that ∀(x, y) ∈ A2, we have x Â y ⇔ σ(x, y)u(x) >

u(y);
(2) Â is a homothetic interval order.

Moreover, if Â is a homothetic interval order, then there exists a pair (u,σ) ∈ E0(A,Â) verifying
(1); and if (u1,σ1), (u2,σ2) ∈ E0(A,Â) are two pairs verifying (1), then σ∗2 = σ∗1 and there exists
a (unique) constant λ > 0 such that u2 = λu1.

Proof : Suppose there exists a pair (u,σ) ∈ E(A,Â) verifying (1). Clearly we have u−1(u(A)∗) =
A∗. For x ∈ A, put x = u(x). Let (x, y) ∈ A2 such that x Â y, and suppose y Â x.
Then we have σ(y, x)σ(x, y)x > σ(y, x)y > x. But since σ ∈ G(A∗ × A), we also have
σ(y, x)σ(x, y) = σ(y, y)σ(x, x) ≤ 1, which contradicts the inequality σ(y, x)σ(x, y)x > x. Therefore
Â satisfies (A).
Since Â satisfies (A), for (x, y) ∈ A× A∗, we have x % y ⇔ x ≥ σ(y, x)y. Let (x, y, z, t) ∈ A4
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such that x Â y % z Â t. Thus we have½
σ(x, y)x > y ≥ σ(z, y)z
σ(z, t)z > t

,

hence σ(x,y)σ(z,t)
σ(z,y) x > t. But σ(x, y)σ(z, t) = σ(x, t)σ(z, y), hence σ(x, t)x > t; i.e., x Â t. Therefore

Â satisfies (ST); so it is an interval order.
It remains to prove that Â is a homothetic structure. The conditions (hI), (hA) and (hP) are

clearly satisfied. Let (x, y, z) ∈ A3 such that x Â y % z. We have σ(x, y)x > y, hence x > 0 and
∃m ∈ N∗ such that mσ(x, z)x > z; i.e., such that mx Â z. Therefore Â satisfies (hC). Concerning
the condition (hSS), let (x, y, z, t) ∈ A4 such that x Â y and z Â t. We have σ(x, y)x > y and
r = σ(z, y)z > 0. Hence ∃(p,m, n) ∈ (N∗)3 such that

σ(x, y)x >
m

pσ(z, z)
r ≥ n

p
r > y.

Since σ(x, y)σ(z,z)σ(z,y) = σ(x, z), multiplying by pσ(z,z)σ(z,y) , we obtain

pσ(x, z)x > mz ≥ nσ(z, z)z > pσ(z, z)
σ(z, y)

y;

i.e., px Â mz % nz Â py. Therefore Â satisfies (hSS).
Conversely, suppose Â is a homothetic interval order. Then ∀(x, y) ∈ A2, we have (cf. the proof

of (4.1)) x Â y⇔ sx,y < 1 and Qy,x = Q≥ry,x with ry,x = s−1x,y.
Let denote > the binary relation on A defined by x > y ⇔ sx,y < sy,x; i.e., by x > y ⇔ Px,y %

Py,x. In particular, we have x > y ⇒ x ∈ A∗. Clearly, > satisfies (A). Let (x, y, z) ∈ A3 such
that x > y > z. If z ∈ A r A∗, then ∅ = Pz,x $ Px,z. And if z ∈ A∗, then from (3.4), we have
Pz,x = Pz,yQy,yPy,z $ Px,z. Therefore > satisfies (T).
Let denote ≈ the binary relation on A defined by x ≈ y⇔ x ≯ y ≯ x. Thus we have

x ≈ y⇔ sx,y = sy,x ⇔ Px,y = Py,x.
We clearly have x ≈ y ⇔ y ≈ x. Let us prove that ≈ is transitive. Let (x, y, z) ∈ A3 such that
x ≈ y ≈ z. Since Px,y = Py,x, we have (x, y) ∈ (A∗)2 ∪ (A r A∗)2. If (x, y) ∈ (A∗)2, then from
(3.4), we have Px,z = Px,yQy,yPy,z = Py,xQy,yPz,y = Pz,y; i.e., x ≈ z. Suppose (x, y) ∈ (ArA∗)2.
Since A∗∗ = A∗, we have Px,z = Py,z = ∅ = Pz,y; i.e., z ∈ ArA∗, which implies Pz,x = ∅. Hence
x ≈ z.
Since ≈ is transitive, it is an equivalence relation. Hence > is a weak order. Let remark that

∀(x, y) ∈ A2, we have x Â y⇒ x > y, therefore x ≥ y ⇒ x % y.
Let us prove that > is a homothetic structure. For (x, y,m, n) ∈ A2 × (N∗)2, we have

Pmx,ny = n
mPx,y. From which we deduce that > satisfies (hI), (hA) and (hP). Since > satisfies

(NT), > satisfies (hC). Concerning the condition (hSS), let (x, y, z, t) ∈ A4 such that x > y and
z > t. Since (x, z) ∈ (A∗)2, we have (3.4) Px,y = Px,zQz,zPz,y. And if y ∈ A∗, we also have
Py,x = Py,zQz,zPz,x. Since sx,y < sy,x with sy,x =∞ if y ∈ ArA∗, ∃(p,m,n) ∈ (N∗)3 such that
n < m, (mp )

2sx,z < sz,x and (
p
n)
2sz,y < sy,z; i.e., such that px > mz ≥ nz > py. Thus > satisfies

(hSS), and > is a homothetic structure.

Since > is a homothetic weak order, from (4.1), there exists a morphism of N∗-set u : A→ R+
such that ∀(x, y) ∈ A2, we have x > y ⇔ u(x) > u(y). For x ∈ A, we have u(x) = 0 if and only



10

if ∀y ∈ A, we have ry,x = 0; i.e., if and only if x ∈ A r A∗. Thus we have u−1(u(A)∗) = A∗.
Let σ∗ : A∗ × A∗ → R∗+ be the map defined by σ∗(x, y) = ry,xu(x)−1u(y). We extend σ∗ to
A∗ × A in the following way: let choose an element a ∈ A∗, and for (x, y) ∈ A∗ × (Ar A∗), put
σ(x, y) = σ∗(x, a). For (x, y,m, n) ∈ (A∗)2×(N∗)2, we have rmy,nx = n

mry,x. Therefore σ factorizes
through Ā∗× Ā. For (x, y, z, t) ∈ (A∗)4, we have σ∗(x, x) = rx,x ≤ 1 and Px,y = Px,tQt,tPt,y,
from which we deduce that sx,y = sx,trt,tst,y and (switching to the inverse) that ry,x = rt,xst,try,t;
hence ry,xrt,z = rt,x(rt,zst,try,t) = rt,xry,z and σ(x, y)σ(z, t) = σ(x, t)σ(z, y). From the definition
of σ, this last equality remains true for (y, t) ∈ A2. Hence (σ, u) ∈ E(A,Â), and by construction
∀(x, y) ∈ A2, we have x Â y⇔ σ(x, y)u(x) > u(y).

It remains to prove the last two assertions of the proposition. For (x, y) ∈ (A∗)2, we have
ry,x = σ(x, y)u(x)u(y)−1, hence

u(x) > u(y)⇔ σ(x, y)u(x)u(y)−1 > σ(y, x)u(y)u(x)−1

⇔ σ(x, y)
1
2u(x) > σ(y, x)

1
2u(y);

which is possible only if σ(x, y) = σ(y, x). Hence (u,σ) ∈ E0(A,Â). Concerning the uniqueness
property, for i = 1, 2, let (ui,σi) ∈ E0(A,Â) such that ∀(x, y) ∈ A2, we have x Â y ⇔
σi(x, y)ui(x) > ui(y). Let recall that u

−1
1 (u1(A)

∗) = A∗ = u−12 (u2(A)
∗). For x ∈ A, let write

u2(x) = λxu1(x) with λx > 0 and λx = 1 if u1(x) = 0. Let remark that the map x 7→ λx factorizes
through Ā. For (x, y) ∈ (A∗)2, we have (easy checking left to the reader) σ2(x, y) = λ−1x λyσ1(x, y),
therefore

σ2(x, y) = σ2(y, x)

⇔ λ−1x λyσ1(x, y) = λ−1y λxσ1(y, x)

⇔ λ2y = λ2x;

i.e., λx = λy. So x 7→ λx is a constant map on A
∗. This completes the proof of the proposition.

(6.2) REMARK. – Let A be N∗-set endowed with a non-empty binary relation Â. If (u,σ) ∈ E(A,Â)
is a pair verifying (6.1)-(1), then we have u−1(u(A)∗) = A∗; and the relation Â is completely
determined by the pair (u|A∗ ,σ∗). But for σ ∈ G0(A∗ × A) and (x, y) ∈ (A∗)2, we have
σ(x, y) = γ(x)γ(y) with γ(x) = σ(x, x)

1
2 . Therefore, the condition (1) of (6.1) is equivalent to

the following condition (1’):
(1’) there exists a morphism of N∗-sets u∗ : A∗ → R+ and a map γ : Ā∗ → ]0, 1], such that

∀(x, y) ∈ (A∗)2, we have x Â y ⇔ γ(x)u(x) > γ(y)−1u(y)
Moreover, if Â is a homothetic interval order, then the pair (u∗, γ) of (1’) is unique up to
multiplication of u∗ by a positive scalar. ?

(6.3) COROLLARY/DEFINITION. – Let A be a N∗-set endowed with a non-empty interval homothetic
order Â, and let (u,σ) ∈ E0(A,Â) be a pair verifying (6.1)-(1). Then u represents the homothetic
weak order Â0 (denoted > in the proof of (6.1)) on A defined by x Â0 y ⇔ ry,x > rx,y; and
∀(x, y) ∈ (A∗)2, we have σ∗(x, y) = ry,xu(y)u(x)−1. The invariant σ∗ ∈ G0(Ā∗× Ā∗) does
not depend on u; we denote it σ∗Â. At last, let denote γ∗Â : Ā∗ → R∗+ the map defined by

γ∗Â(x) = σ∗Â(x, x)
1
2 ; so we have σ∗Â(x, y) = γ∗Â(x)γ∗Â(y).

(6.4) COROLLARY. – Let A be a N∗-set endowed with a non-empty homothetic interval order Â,
and let u : A→ R+ be a morphism of N∗-sets which represents Â0. Then ∀(x, y) ∈ (A∗)2, we have
u(x)u(y)−1 = (ry,xsy,x)

1
2 .
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Proof : For (x, y) ∈ (A∗)2, we have σ∗Â(x, y) = ry,xu(y)u(x)−1 and σ(x, y) = σ(y, x); from which

we deduce that u(x)u(y)−1 = (ry,xr−1x,y)
1
2 = (ry,xsy,x)

1
2 .

(6.5) REMARK. – Let A be a N∗-set endowed with a non-empty homothetic interval order Â,
and let u : A → R∗+ be a morphism of N∗-sets which represents Â0. One may wonder if the
map A × A → R∞+ , (x, y) 7→ ry,x = s−1x,y factorizes through the product-map u × u; i.e., if
∀(x, y, x0, y0) ∈ A4 such that u(x) = u(x0) and u(y) = u(y0), we have rx,y = rx0,y0 . In general
the answer is negative: cf. the example (7.5) below. ?

Let A be a N∗-set endowed with a non-empty homothetic interval orderÂ, and let u : A→ R+ be
a morphism of N∗-sets u : A→ R+ which represents Â0. Choose an element a ∈ A∗ and let denote
σaÂ : A∗×A→ R∗+ the map extending σ∗Â defined by σaÂ(x, y) = σ∗Â(x, a) for (x, y) ∈ A∗×(ArA∗).
Then (u,σaÂ) ∈ E0(A,Â) and ∀(x, y) ∈ A2, we have x Â y ⇔ σaÂ(x, y)u(x) > u(y). The map
σaÂ is split: there exist two maps σ1 : Ā

∗ → R∗+ and σ2 : Ā → R∗+ such that σaÂ = σ1 × σ2
with σ2(x) = σ2(x)−1 (x ∈ A). In fact, for (x, y) ∈ (A∗)2, put σ1(x) = sa,ara,xu(x)−1 and
σ∗2(y) = sa,yu(y)−1; since ry,x = ry,asa,ara,x (3.4), we have σ1(x)σ∗2(y)−1 = σ∗Â(x, y). Let
σ2 : A → R∗+ be the map extending σ∗2 defined by σ2(y) = σ2(a) for y ∈ A r A∗. The maps
σ1 : A∗ → R∗+ and σ2 : A→ R∗+ defined in this way factorize through Ā∗ and Ā respectively. And by
construction, we have σaÂ = σ1×σ2. In other words, ∀(x, y) ∈ A2, we have x Â y ⇔ u1(x) > u2(y)
with ui(x) = σi(x)u. For i = 1, 2, the map ui : A→ R+ is a morphism of N∗-sets. This formulation
by means of a pair of maps (u1, u2) is the one usually employed to represent interval orders; cf. [F]
theorem 2.7. Let remark that in the general (i.e., not necessarily homothetic) theory of interval
orders, there is a priori no possible uniqueness result for the pair (u1, u2). As we will see in section
7 below, for homothetic interval orders the result is quite different.

7. Let A be a N∗-set endowed with a binary relation Â. We denote Â1 and Â2 the binary
relations on A defined by:
- x Â1 y ⇔ (mx Â z %my,∃(z,m) ∈ A×N∗),
- x Â2 y ⇔ (mx % z Âmy, ∃(z,m) ∈ A×N∗).

(7.1) LEMMA. – Let A be a N∗-set endowed with a non-empty homothetic interval order Â. Then
for i = 1, 2, Âi is a non-empty homothetic weak order.

Proof : Let a pair (u,σ) ∈ E0(A,Â) satisfying (6.1)-(1). We may (and do) suppose σ = σaÂ for
an element a ∈ A∗. For (x, y) ∈ A2, we have x Â y ⇒ x Âi y (i = 1, 2). Therefore the relations
Â1 and Â2 are non-empty. Let us prove that Â1 is a homothetic weak order. Let (x, y) ∈ A2 such
that x Â1 y, and let (z,m) ∈ A×N∗ such that mx Â z % my. Thus we have x ∈ A∗. First of all
suppose (y, z) ∈ (A∗)2. Hence we have σ(x, z)u(mx) > u(z) ≥ σ(x, y)u(my). We obtain

rz,x
u(z)

u(x)
u(mx) > u(z) ≥ rz,y u(z)

u(y)
u(my),

hence rz,x > rz,y. But from (3.4), we have rz,x = rz,asa,ara,x and rz,y = rz,asa,ara,y. From which
we deduce that ra,x > ra,y. Now if (y, z) ∈ (Ar A∗) ×A, then this last inequality remains true:
we have ra,x > 0 and ra,y = 0. At last, if (y, z) ∈ A∗ × (A r A∗), then replacing z by a in the
calculation above, we still obtain ra,x > ra,y.
Conversely, let (x, y) ∈ A2 such that ra,x > ra,y. Then x ∈ A∗, and ∃(m,n) ∈ (N∗)2 such that

ra,x >
n
m ≥ ra,y. Since 1

nra,t = rna,t (t ∈ A), we have mrna,x > 1 ≥ mrna,y. First of all suppose
y ∈ A∗. Then we obtain σ(x, a)u(mx) > u(na) ≥ σ(y, a)u(my); i.e., mx Â na % my. Thus we
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have x Â1 y. Now if y ∈ A r A∗, then ∀m ∈ N∗ such that m > sx,a, we have mx Â a Â my;
therefore x Â1 y.
So we proved that the morphism of N∗-sets u1 : A→ R+, x 7→ ra,x represents the relation Â1.

Then it is easy to check (and left to the reader) that Â1 is a homothetic weak order.
Let (x, y) ∈ A2 such that x Â2 y, and let (z,m) ∈ A × N∗ such that mx % z Â my. Then

z ∈ A∗, u(mx) ≥ σ(z, x)u(z) and σ(z, y)u(z) > u(my), from which we obtain σ(z, x)−1u(mx) ≥
u(z) > σ(z, y)−1u(my). In particular, we have x ∈ A∗. First of all suppose y ∈ A∗. Like for Â1,
we obtain sa,x > sa,y; and this inequality remains true for y ∈ ArA∗. Conversely, like for Â1 we
prove that if (x, y) ∈ A2 is such that sa,x > sa,y, then x Â2 y. Hence the morphism of N∗-sets
u2 : A→ R+, x 7→ sa,x represents Â2. And like for Â1, it is easy to check that Â2 is a homothetic
weak order.

(7.2) PROPOSITION. – Let A be a N∗-set endowed with a non-empty binary relation Â. The two
following conditions are equivalent:
(1) there exists two morphisms of N∗-sets u1, u2 : A→ R+ such that u1 ≤ u2 and ∀(x, y) ∈ A2,

we have x Â y⇔ u1(x) > u2(y);
(2) Â is a homothetic interval order.

Moreover, if Â is a homothetic interval order, then the pair (u1, u2) of (1) is unique up to
multiplication by a positive scalar (i.e., up to replacing it by (λu1,λu2) for a λ > 0); and for
i = 1, 2, ui represents Âi.

Proof : Let u1, u2 : A → R+ be two morphisms of N∗-sets verifying (1). Since u1 ≤ u2, Â
satisfies (A); and ∀(x, y) ∈ A2, we have x % y ⇔ u2(x) ≥ u1(y). It is easy to check (and left to the
reader) that Â is a homothetic interval order.
Conversely, suppose Â is a homothetic interval order. Choose an element a ∈ A∗, and let

u∗1, u∗2 : A∗ → R∗+ be the morphisms of N∗-sets defined by u∗1(x) = sa,ara,x and u∗2(x) = sa,x. For
i = 1, 2, let ui : A → R+ be the morphism of N∗-sets obtained extending u∗i by zero on Ar A∗.
For (x, y) ∈ (A∗)2, we have

x Â y ⇔ ry,x > 1

⇔ ry,asa,ara,x > 1

⇔ u1(x) > u2(y).

By construction, we have u−1i (ui(A)
∗) = A∗ (i = 1, 2), therefore the equivalence above remains

true for y ∈ ArA∗. Since Â satisfies (A), we have u1 ≤ u2. From the proof of (7.1), we already
know that for i = 1, 2, ui represents Âi.
Concerning the uniqueness property, let u01, u02 : A → R+ be two others morphisms of N∗-

sets verifying (1). For (m,n, p) ∈ (N∗)3, we have mu1(x) > nu2(x) > pu1(x) if and only if
mu01(x) > nu02(x) > pu01(x). Thus for i = 1, 2, we have u0i(x) = 0 ⇔ ui(x) = 0 (x ∈ A).
For i = 1, 2, let λi : A

∗ → R∗+ be the map defined by λi(x) = ui(x)
−1u0i(x); since ui and u

0
i

are morphisms of N∗-sets, λi factorizes through the quotient-set Ā∗. Let f : Ā∗ × Ā∗ → R∗+
be the map defined by f(x, y) = λ2(y)

−1λ1(x). Let (x, y) ∈ (A∗)2, and put µ = u1(x)
−1u2(y)

and α = f(x, y). For (m,n) ∈ (N∗)2, we have mx Â ny ⇔ m
n > µ; but we also have

mx Â ny ⇔ u01(mx) > u02(ny) ⇔ αmn > µ. If α > 1, let choose (m,n) ∈ (N∗)2 such that
αmn > µ ≥ m

n ; then we have mx Â nx % mx, contradiction. If α < 1, let choose (m,n) ∈ (N∗)2
such that mn > µ ≥ αmn ; then we have mx Â nx % mx, contradiction. Hence α = 1. So we proved
that f = 1. This implies there exists a constant λ > 0 such that λ1 = λ2 = λ. This completes the
proof of the proposition.
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(7.3) COROLLARY. – Let A be a N∗-set endowed with a non-empty homothetic interval order Â.
Let a ∈ A∗ and u1, u2 : A → R+ be the morphisms of N∗-sets defined by u1(x) = sa,ara,x and
u2(x) = sa,x. Then the pair (u1, u2) verifies (7.2)-(1).

(7.4) COROLLARY. – Let A be a N∗-set endowed with a non-empty homothetic interval order Â.
(1) Let (u,σ) ∈ E(A,Â) be a pair verifying (6.1)-(1). Let u1, u2 : A → R+ be the morphisms of

N∗-sets defined by ui(A r A∗) = 0 (i = 1, 2), u1(x) = γ∗Â(x)u(x) and u2(x) = γ∗Â(x)−1u(x)
(x ∈ A∗). Then the pair (u1, u2) verifies (7.2)-(1).

(2) Let u1, u2 : A→ R+ be two morphisms of N∗-sets verifying (7.2)-(1). Let u : A→ R+ be the
morphism of N∗-sets defined by u = (u1u2)

1
2 , and let v∗ : Ā∗ → R∗+ be the map defined by

v∗ = (u1u2)
1
2 with u2(x) = u2(x)

−1. Then u represents Â0 and γ∗Â = v∗.

Proof : Let choose an element a ∈ A∗ and let u01, u02 : A → R+ be the morphisms of N∗-sets
defined by u01(x) = sa,ara,x and u02(x) = sa,x. For (x, y) ∈ (A∗)2, we have

rx,y < ry,x ⇔ rx,asa,ara,y < ry,asa,ara,x

⇔ sa,ara,xsa,x > sa,ara,ysa,y

⇔ (u01u
0
2)(x) > (u

0
1u
0
2)(y).

Since for i = 1, 2, we have u0−1i (u0i(A)
∗) = A∗, the equivalence above remains true for (x, y) ∈ A2.

Hence u01u02 represents Â0. Therefore u0 = (u01u02)
1
2 represents Â0, and u0 is a morphism of N∗-

sets. Moreover, it is easy to check (and left to the reader) that the map γ∗Â : Ā∗ → R∗+ is given
by γ∗Â(x) = u01(x)

1
2u02(x)−

1
2 . By construction, for x ∈ A∗, we have u01(x) = γ∗Â(x)u0(x) and

u02(x) = γ∗Â(x)−1u0(x). Finally the uniqueness properties in (6.1) and (7.2) implie the corollary.

The following proposition characterizes the homothetic semiorders.

(7.5) PROPOSITION. – Let A be a N∗-set endowed with a non-empty binary relation Â. The three
following conditions are equivalent:
(1) there exists a morphism of N∗-sets u : A → R+ and a constant α ∈ ]0, 1] such that
∀(x, y) ∈ A2, we have x Â y⇔ αu(x) > u(y);

(2) Â is a homothetic interval order such that Â1=Â2 (in that case, we have Â1=Â0=Â2);
(3) Â is a homothetic semiorder.

Moreover, if Â is a homothetic semiorder, then the pair (u,α) of (1) is unique up to multiplication
of u by a positive scalar.

Proof : Suppose there exists a morphism of N∗-sets u : A → R+ and a constant α ∈ ]0, 1]
verifying (1). Let (x, y) ∈ A2. We have x Â1 y if and only if ∃(z,m) ∈ A × N∗ such that
αu(mx) > u(z) ≥ αu(my); i.e. (cf. the proof of (7.1)), if and only if u(x) > u(y). And
we have x Â2 y if and only if ∃(z,m) ∈ A × N∗ such that αu(mx) ≥ αu(z) ≥ αu(my); i.e.,
if and only if u(x) > u(y). Thus we have Â1=Â0=Â2. Now let (x, y, z, t) ∈ A4 such that
x Â y Â z. Since αu(x) > u(y) > α−1u(z), we have α2u(x) > u(z). If t % x, we have
u(t) ≥ αu(x) and αu(t) ≥ α2u(x) > u(z), hence t Â z. And if z % t, we have α−1u(z) ≥ u(t) and
αu(x) > α−1u(z) > u(t), hence x Â t. Therefore Â is a semiorder.
Conversely, suppose Â1=Â2. Let a ∈ A∗. From the uniqueness property in (4.1), there exists a

(unique) β > 0 such that ∀x ∈ A, we have ra,x = βsa,x; taking x = a, we obtain ra,a = βsa,a. From
(7.3) and (7.4), we have Â0=Â1, and ∀(x, y) ∈ (A∗)2, we have σ∗Â(x, y) = σ∗Â(a, a) = ra,a. Put
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α = ra,a ∈ ]0, 1]. If u : A→ R∗+ is a morphism of N∗-sets which represents Â0, then ∀(x, y) ∈ A2,
we have x Â y ⇔ αu(x) > u(y).
The implication (1)⇒ (3) and the equivalence (1)⇔ (2) are proved. Let us prove the implication

(3)⇒ (1). SupposeÂ is a homothetic semiorder. Let a pair (u,σ) ∈ E0(A,Â) verifying (6.1)(1). We
have to prove that σ∗ = σ∗Â is a constant map. Let (x, y, z, t) ∈ (A∗)4 such that x Â y Â z. We have
σ(x, y)u(x) > u(y) and σ(y, z)u(y) > u(z). Mutiplying the first inequality by σ(y, t) and the second
one by σ(z, t), we obtain σ(y, y)σ(x, t)u(x) > σ(y, t)u(y) and σ(z, z)σ(y, t)u(y) > σ(z, t)u(z). From
which we deduce that

σ(y, y)σ(x, t)σ(z, z)

σ(z, t)
u(x) > u(z);

i.e., that σ(y, y)σ(x, z)u(x) > u(z). Suppose σ∗ is not a constant map. Then we may (and do)
assume σ(t, t) 6= σ(y, y). Up to permuting t and y, and replacing x, t, z par some multiples
of themselves (in order to have x Â t Â z), we may (and do) assume σ(t, t) < σ(y, y). Put

µ = σ(y,y)
σ(t,t) > 1. Since Px,y = Q>sx,y , Py,z = Q>sy,z and sx,ysy,z = sx,yr

−1
y,y = sx,ysy,y, we

have Px,yPy,z = Q>sx,zsy,y . Thus we deduce that for every ² > 0, there exists (m,n, p) ∈ (N∗)3
such that mx Â py Â nz and sx,zsy,y <

m
n < sx,zsy,y + ². So let (m,n, p) ∈ (N∗)3 such that

sx,zsy,y <
m
n < µsx,zsy,y. Since σ(x, z) = s

−1
x,zu(x)

−1u(z), multiplying by u(x)u(z)−1, we obtain

1

σ(y, y)σ(x, z)
<
u(mx)

u(nz)
<

µ

σ(y, y)σ(x, z)
.

Therefore, up to replacing (x, y, z) by (mx, py, nz), we may (and do) suppose that we have
σ(y, y)σ(x, z)u(x) > u(z) > σ(t, t)σ(x, z)u(x). Then ∃(a, b) ∈ (N∗)2 such that

u(z) ≥ a
b
σ(t, z)u(t) ≥ σ(t, t)σ(x, z)u(x).

Again, up to replacing (x, y, z, t) by (bx, by, bz, at), we may (and do) suppose a = b = 1. Thus we
have z % x; and u(t) ≥ σ(t, z)−1σ(t, t)σ(x, z)u(x) = σ(x, t)u(x), that is t % x. Therefore Â is not
a semiorder, contradiction. So we proved that σ∗ is a constant map, which implies (1).

Let A be a N∗-set endowed with a non-empty homothetic interval order Â. From (7.5), Â is a
semiorder if and only if its invariant σ∗Â is a constant map. And Â is a weak order if and only if
σ∗Â = 1. We can see the homothetic interval order Â as a deformation of its associated homothetic
weak order Â0; the invariant σ∗Â being the expression of this deformation. So the homothetic
semiorders are the homothetic interval orders for which the deformation is as simple as possible,
that is expressed by a constant invariant.

(7.6) EXAMPLE. – Let A = N∗x
`
N∗y be the union of two copies of N∗. Let α, β be two real

numbers such that 0 < α, β ≤ 1, and let σ : Ā× Ā → R∗+ be the map defined by σ(x, x) = α,

σ(y, y) = β and σ(x, y) = σ(y, x) = (αβ)
1
2 . Let u : A → R+ be the morphism of N∗-sets defined

by u(x) = u(y) = 1. From (6.1), the binary relation Â on A defined by z Â t⇔ σ(z, t)u(z) > u(t),
is a homothetic interval order. Let remark that we have A∗Â = A. Moreover, Â is a semiorder if
and only if α = β; in which case we have σ∗Â = α.
Otherwise, we have rx,x = σ(x, x) and ry,y = σ(y, y). So if α 6= β, then the map

A × A → R∗+, (z, t) 7→ rz,t do not factorizes through the product-map u × u; which answers
the question asked in (6.5). ?

8. In this section, we generalize proposition (5.1) to the homothetic interval orders.
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(8.1) LEMMA. – Let (A, ◦) be a commutative semigroup endowed with a non-empty homothetic
interval order Â. If Â0 is ◦-independent, then Â est un semiorder.

Proof : Suppose Â0 is ◦-independent. In particular, we have A∗ ◦ A ⊂ A∗. Let a ∈ A∗. For
(x, y, z) ∈ A3, we have x ◦ z Â1 y ◦ z ⇔ ra,x◦z > ra,y◦z. Replacing a by a ◦ z ∈ A∗, we obtain

x ◦ z Â1 y ◦ z ⇔ ra◦z,x◦z > ra◦z,y◦z ⇔ ra,x > ra,y ⇔ x Â1 y.

Thus Â1 is ◦-independent. In the same way, we prove that Â2 est ◦-independent. Let u0, u1, u2 :
A→ R+ be the morphisms of N∗-sets defined by u1(x) = sa,ara,x, u2(x) = sa,x and u0 = (u1u2)

1
2 .

From (7.3), for i = 0, 1, 2, ui represents Âi; and from (5.1), ui is a morphism of semigroups. For
(x, y)2 ∈ A, we have (easy calculation)

u0(x ◦ y)2 = u0(x)2 + u0(y)2 + u1(x)u2(y) + u1(y)u2(x)
= [u0(x) + u0(y)]

2 + ([u1(x)u2(y)]
1
2 − [u1(y)u2(x)] 12 )2,

from which we deduce that ([u1(x)u2(y)]
1
2−[u1(y)u2(x)] 12 )2 = 0; i.e., that u1(x)u2(y) = u1(y)u2(x).

That is possible only if u2 = λu1 for a constant λ > 0. Hence Â is a semiorder (7.5).
(8.2) PROPOSITION. – Let (A, ◦) be a commutative semigroup endowed with a non-empty homoth-
etic interval order Â. The two following conditions are equivalent:
(1) Â is ◦-pseudoindependent;
(2) for i = 1, 2, Âi est ◦-independent.

Proof : Suppose Â is ◦-pseudoindependent. Let a ∈ A∗. From the proof of (5.1), for x, y ∈ A,
we have ra,x◦y = ra,x+ra,y; and in the same way, we obtain sa,x◦y = sa,x+sa,y. So the implication
(1)⇒ (2) is proved.
Conversely, suppose for i = 1, 2, Âi est ◦-independent. Let u1, u2 : A→ R+ be two morphisms

of N∗-sets verifying (7.2)-(1). For i = 1, 2, since ui represents Âi (7.2), it is a morphism of
semigroups (5.1). From this we deduce that for (x, y, z, t) ∈ A4, we have½

(x Â y, z Â t)⇒ x ◦ z Â y ◦ t
(x % y, z % t)⇒ x ◦ z % y ◦ t .

Let (x, y) ∈ A∗ × (ArA∗). If x ◦ y ∈ ArA∗, then we have x Â x ◦ y, that is u1(x) > u2(x ◦ y) =
u2(x) + u2(y) = u2(x), which is impossible because u1 ≤ u2. Hence Â is ◦-pseudoindependent.
(8.3) COROLLARY. – Let (A, ◦) be a commutative semigroup endowed with a non-empty homothetic
interval order Â. The two following conditions are equivalent:
(1) Â0 is ◦-independent;
(2) Â is a ◦-pseudoindependent semiorder.

Proof : If Â0 is ◦-independent, then Â is a semiorder (8.1), therefore Â1=Â0=Â2 (7.5) and Â is
◦-pseudoindependent. So we have (1)⇒ (2). Conversely, if Â is a ◦-pseudoindependent semiorder,
then we have Â1=Â0=Â2 (7.5) and Â0 is ◦-independent (8.2).
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(8.4) EXAMPLE. – Let A = N∗x × N∗y be the product of two copies of N∗, endowed with the
structure of commutative semigroup ◦ defined by (mx,ny) ◦ (m0x,n0y) = ((m+m0)x, (n+ n0)y).
Let λ, µ be two real numbers such that 0 < λ ≤ µ, and let u1, u2 : A→ R+ be the morphisms of
semigroups defined by u1(mx,ny) = λm+n and u2(mx,ny) = µm+n. Then from (7.2) and (8.2),
the binary relation Â on A defined by z Â t⇔ u1(z) > u2(t), is a ◦-pseudoindependent homothetic
interval order. But the homothetic weak order Â0 is ◦-independent (i.e., Â1=Â2) if and only if
we have λ = µ; in which case Â is a homothetic weak order. ?

For once, let us conclude with a definition.

(8.5) DEFINITION. – We call biased balance a commutative semigroup (A, ◦) endowed with a ◦-
pseudoindependent homothetic semiorder Â.
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