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Abstract

The application of correspondence analysis to square asymmetric tables is often unsuc-
cessful because of the strong role played by the diagonal entries of the matrix, obscuring
the data off the diagonal. A simple modification of the centering of the matrix, coupled
with the corresponding change in row and column masses and row and column metrics, al-
lows the table to be decomposed into symmetric and skew-symmetric components, which
can then be analyzed separately. The symmetric and skew-symmetric analyses can be
performed using a simple correspondence analysis program if the data are set up in a
special block format.



1 Introduction

Correspondence analysis (CA) is a technique for visualizing tables of frequencies as well
as nonnegative data on a commensurate set of ratio-scale variables. There are a number
of different ways of defining correspondence analysis. For our purposes we consider two
ways, both based on the singular value decomposition (SVD).

The first way can be called the matriz approzimation method. Suppose that the data
matrix N has been divided by its grand total n to obtain the so-called correspondence
matriz P = IN/n. Suppose P has row and column sums r and ¢ respectively, and that D,
and D. are diagonal matrices with the elements of r and ¢ on the diagonal. For frequency
data, P is an observed discrete bivariate distribution and r and ¢ are the marginal dis-
tributions. Then CA can be defined as the reduced-rank matrix approximation of P by

weighted least squares, minimizing the following expression:

trace D (P~ P)D7' (P~ P)T] = Y- )" w (1)

"
for a matrix P of given reduced rank. We know that the best rank 1 approximation is
given by P = rc', called the trivial solution, so that we can equivalently consider the
approximation of the centered matrix P — re’. The solution for any low rank is given by
the generalized singular value decomposition (GSVD) of P —rc' in the metrics D' and

D! respectively:

P—rc' =UD,V'"  whereU'D'U=V'D'V =1 (2)

(this differs from the usual SVD where the metrics are simply identity matrices — see
Greenacre, 1984, Appendix A). For constructing CA maps, the principal coordinates of
the row and column points are given by F = D-'UD,, and G = D;'VD,, respectively.
For example, to plot the rows and columns in two dimensions, the rank 2 solution given
by the first two columns of F and G is used. The resulting plot is called the symmetric
map, as opposed to other so-called asymmetric maps (see Greenacre 1984, 1993).

The second way of defining CA may be called the profile approzimation method. This
is the way CA was originally defined by Benzécri (1973). A profile is a row or column of
the matrix divided by its corresponding sum. For example, the row profiles are the rows
of the matrix D7'P, in which case CA can be defined as the approximation of the row
profiles by points in a low-dimensional subspace. Distances and scalar products in the
space are computed using the chi-square metric, a weighted Euclidean metric using D!

as the weighting matrix. Furthermore, the row profiles are weighted by the respective



elements of r, called the row masses. The objective function in this case is:
. Al (1 ATy < (pii/ri = @)
trace[D,(D;'P — Q)D' (D 'P —Q)'] = > r; >~ —— (3)
. €

T comes closest

Again we have a trivial solution because it turns out that the row vector ¢
to all the row profiles in terms of weighted least sum-of-squared distances, so that it is
equivalent to approximate the centered profiles D7'P —1c'. Again this problem is solved
using the GSVD of D 'P — 1c', this time in the metrics D, (the diagonal matrix of row

masses) and D! (the metric on the row points):
D'P —1c" =XD,Z" where X'D,X =Z'D'Z =1 (4)

Since the functions (1) and (3) to be minimized are equivalent, there is the following
relationship between the two GSVDs (2) and (4): X = D 'U (left singular vectors),
D, = D, (singular values) and Z = V (right singular vectors), Hence the principal
coordinates matrices turn out to be: F = XD, and G = D;'ZD,,.

In both definitions of CA the total inertia of the table, a measure of the table’s
total variation, is equal to the weighted sum-of-squares of the centered matrix being

approximated:

total inertia = Z Z(pij - Ticj)z/(ricj) (5)
Tg

The inertia accounted for by the rank K™ solution (or K*-dimensional solution) is equal
to the weighted sum-of-squares of the matrix approximation, which is equal to "8 a?.
The minimum value of (1) (or (3)), which is the residual inertia not accounted for, is
equal to the remaining sum-of-squared singular values: Z?:K*-H az.

The special case considered here is the application of CA to square tables where the
rows and columns refer to the same set of objects. Mobility tables, export/import data,
migration tables, misclassification tables, confusion matrices and transition matrices are
examples of square tables regularly encountered in practice. The application of CA to
such tables is generally not very successful and this is often due to the strong effect of the
diagonal values on the results.

For example, consider the social mobility table given in Table 1, obtained from Best
(1990). These data concern the jobs of parliamentarians in the Frankfurter Nationalver-
sammlung, considered to be the first democratic government in Germany. The rows refer
to the jobs of the parliamentarians when entering the labour market, and the columns to

their jobs in May 1848 when the government started its session.



Table 1

Mobility table from Frankfurter Nationalversammlung

Job when entering Main occupation in May 1848
labour market mj ma me mm mc mf ml ms
Justice fj | 117 83 19 0 1 17 76 6
Administration fa 11 37 6 0 o 7 7 6
Education fe 4 3 67 1 4 3 5 13
Mulitary fm 0 5 1 16 0 8 1 0
Church fe 0 111 0 26 0 1 0
Farmer ft 0 4 0 0 0 19 1 0
Lawyer fl 8 2 1 0 0 0 22 1
Self-employed  fs 0 720 0 4 1 0 37

Abbreviations used as labels in Figures 1 to 5 are constructed as follows: first letter is “f” or

“m” corresponding to time points “first occupation” and “main occupation” respectively;

second letter indicates the occupation.

The two-dimensional CA map of this table is given in Figure 1. The total inertia
of this table is 2.0571 and 57.1% of this inertia is accounted for in the map. Notice
that of all the row-column pairs, only one — military — separates, while the others lie
practically at the same position in the display. Since the CA of a symmetric matrix gives
coincident pairs of rows and columns, this map might lead us to conclude that the data
are close to symmetric, apart from the fourth row and fourth column. In fact, there
are many other interesting deviations from symmetry in the table, which could be seen
by examining higher-dimensional solutions. However, we do not see these in the best
two-dimensional solution, which is the one most users of CA would interpret, since this
solution is dominated by the symmetric part of the table, especially the diagonal of the
matrix.

In Section 2 we shall show how the analysis of the square table can be separated into
two analyses where the symmetric part of the table and the deviations from symmetry
are treated separately. In Section 3 we show how to perform both the symmetric and
skew-symmetric correspondence analyses using a regular computer program for simple

correspondence analysis. Section 4 closes with a discussion of the method.



Figure 1

Correspondence analysis of Table 1

"0.5310 (25.8%)
O min
fme
ff oo mf
me fceomec
fe
maogfa 115 fs 0.6444
mj@. (31.3%)
19111
|

2 Symmetric and skew-symmetric analyses

An alternative approach to visualizing a square asymmetric table, say A, is to decompose
it into two components, a symmetric table and a skew-symmetric table (Constantine &

Gower 1978, Gower 1980):
A-Q+R (6)

where Q = (A + AT) and R = (A — AT). The sum-of-squares is similarly partitioned:
220 =20 gt 2T ™)
T g T g T g

since the sum-of-cross-products vanishes: 37,37, ¢;;7; = 0. In our case the matrix A

T

is the correspondence table P, centered with respect to rc', and the sum-of-squares we

want to decompose, the total inertia in (5), includes the weighting of each squared term
by 1/(ric;).
It would be convenient if the CA of P decomposed into the CA of the symmetric

component and the CA of the skew-symmetric component, as in (6):

P=S+T (8)



For the data of Table 1 the matrices on the right hand side of (8), multiplied by the

sample size n, are equal to:

[ 117.0 47.0 115 00 05 85 42.0 3.0 ]

470 370 45 25 05 55 45 65
115 45 670 1.0 75 15 3.0 165
00 25 10 160 00 40 05 0.0

nS = 05 05 75 00 260 00 05 2.0
85 bbb 1.5 4.0 0.0 19.0 05 0.5
42.0 45 3.0 05 05 05 220 0.5
30 65 165 00 20 05 05 37.0 |
0.0 36.0 7.5 0.0 0.5 85 34.0 3.0 ]
—-36.0 0.0 1.5 =25 =05 1.5 2.5 —=0.5
-75 =15 0.0 0.0 =35 1.5 2.0 =35
0.0 2.5 0.0 0.0 0.0 4.0 0.5 0.0
nT =

-05 05 35 00 00 00 05 =20

-85 —-15 —-156 —-4.0 0.0 00 05 =05
-340 -25 -20 -05 —-05 =05 00 0.5

=30 05 35 00 20 05 =05 0.0 |

The only problem is that the CA of P involves a different centering, and hence also
different metrics, from the CA of S. S has row and column margins equal to w = %(r—l—c),
the average of the row and column sums of P. Notice that T is already centered in the
sense that all its elements sum to zero: 37,37, ¢;; = 0.

A solution to this problem is to use the centering of S and its associated row and
column metrics, both equal to D!, for the CA of P. In other words, instead of analyzing
P —rc' in the metrics D! and D!, we analyze P — ww' in the metrics D! and D!

Equation (8) in centered form is thus:
P-ww' =S—ww'+T (9)
and the corresponding decomposition of inertia is
ZZ (pij — wiw;)* [ (wiw;) ZZ (sij — wiw;)*/(wiw;) +Zthj/(wiwj) (10)
i

T is not the closest rank 1 matrix to P we expect the inertia on the left hand

Because ww
side of (10) to be higher than the usual inertia given by (5) — how much higher will depend
on how different r and ¢ are. In our example, the total inertia of the recentered matrix is
2.2222, that is 0.1651 higher than the matrix with the usual centering analyzed in Figure
1. Incorporating this disparity in the margins of P into the CA leads to some more of the
asymmetry being displayed in the map. Figure 2 shows the map obtained by performing

the GSVD on P — ww' in the metrics D Land D!

—', and we can see that more pairs of

points are separate compared to Figure 1.



Figure 2

Recentered correspondence analysis of Table 1
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Correspondence analysis of
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0.5038 (22.7%)
me
feo
ce
se i
ae © 0.6400
ng (28.8%)

Figure 4
Correspondence analysis of

skew-symmetric component T
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Although some more of the deviation from symmetry in the data is displayed in Figure
2, the map is still largely concentrated on the symmetric component. In order to separate
these components we can perform two analyses, one using the GSVD, again in the metrics
D! and D', on the centered symmetric table S — ww' and the other a similar GSVD
on the already centered skew-symmetric T. These analyses attempt to account for the
respective inertia components on the right hand side of (10) separately. The resultant
displays are shown in Figures 3 and 4, both of which are drawn to the same scale. In both
of these displays it is necessary only to display the label corresponding to the occupations
(see Table 1) because there is no need to indicate the time points.

The interpretation of Figure 3 is essentially the same as Figure 1 (or Figure 2) — each
pair of points has been substituted by one point representing the occupation, since none
of the deviation from symmetry is included in this analysis. Closeness of two occupations
will depict the fact that there is a relatively high level of exchange between them, while
distant occupations involve relatively little exchange. There is a gradient of occupations
from military at top left to farmer and then to a cluster of jobs at the centre consisting
of administration, justice and lawyer, and then across to the right where we first find
education and self-employed and then church at the extreme. The positions of the jobs
concur with Best’s hypothesis that the occupations fall into groups within which people
tend to migrate, with relatively little migration between groups. These groups are (i)
military, farmer; (ii) justice, administration, lawyer; and (iii) education, church, self-
employed. To verify this grouping in the data we re-order the rows and columns of Table 1,
and tabulate the normalized frequencies s;;/1/(w;w;) of the symmetric matrix, multiplied
by the sample size n (to give chi-square components rather than inertia components),
given in Table 2. The three sets of rows and columns are delineated and it is clear
that the highest values are grouped in the subtables on the diagonal of the table, in
accordance with Best’s hypothesis. Notice that the exchange is not always between all
pairs of occupations in a group, for example there is a large exchange between justice and

administration and justice and lawyer, but not between lawyer and administration.



Table 2
Values of ns;;/\/(w;w;) of the re-ordered symmetric component

Job when entering Main occupation in May 1848

labour market mm mf mj ma ml me mc ms
Mulitary fm | 460.0  89.6 0.0 338 8.2 | 13.2 0.0 0.0
Farmer ft 89.6 331.8 | 61.5 58.1 6.4 15.5 0.0 6.7
Justice fj 0.0 61.51]351.7 205.9 223.1| 49.3 3.7 16.8
Administration fa 33.8 58112059 236.3 34.8| 28.1 54 531
Lawyer fl 8.2 6.4 223.1 34.8 206.5 | 22.7 6.6 4.9
Education fe 13.2 155 | 49.3 281  22.7|410.9 80.2 132.1
Church fe 0.0 0.0 3.7 5.4 6.6 | 80.2 484.8 27.9
Self-employed  fs 0.0 6.7 16.8 53.1 4.9 | 132.1 279 386.8

Although the inertia displayed in Figure 4 is much smaller than in Figure 3, the
advantage for the interpretation is that it concentrates entirely on the deviations from
symmetry. As shown by Constantine & Gower (1978), the singular vectors of a skew-
symmetric matrix occur in pairs corresponding to pairs of equal singular values. Points
close to the centre of the map, clergy, education and self-employed, show that there is very
little difference between the inflow and outflow amongst these jobs. The larger changes
in flow are between those categories further from the centre. The direction of positive
flow can be deduced from the relative orientations of the points — in this case flow is
interpreted in a clockwise direction so that categories j (justice) and m (military) are
losing more people to the categories [ (lawyer), a (administration) and f (farmer). The
actual interpretation is in terms of the triangles formed by each pair of points and the
centre (Figure 5): if the area is large then the deviation from symmetry is large (see
Constantine & Gower 1978 or Gower 1980). For example, the biggest triangle of this
type in Figure 4 is formed by points j (justice) and [ (lawyer), as shown in Figure 5.
Thus the highest positive deviation from symmetry (of the normalized value ¢;;/, /w;w;)
is for the job changes from justice to lawyer. A negative change of the same magnitude
is from lawyer to justice, i.e. from point [ to j, being a triangle with counter-clockwise
orientation. As in Table 2, we can verify this by tabulating the normalized values of
ti;/\/wiw;, also multiplied by the sample size n and with rows and columns re-ordered as
in Table 2 (see Table 3). The large normalized values for the flow from justice and from

military can be checked in this table.

10



Figure 5

Interpretation of skew-symmetric map in terms of

area of triangle subtended with origin

Values of nt;;/1/(w;w;) of the re-ordered skew-symmetric component

Positive deviation

from symmetry

Table 3

Job when entering

Main occupation in May 1848

labour market mm  mf mj ma ml me mc ms
Mulitary fm 0.0 89.6 0.0 338 8.2 0.0 0.0 0.0
Farmer ft |-89.6 0.0 -61.5 -15.8 6.4 | -15.5 0.0 -6.7
Justice fj 0.0 61.5 0.0 157.7 180.6 | 32.2 3.7 16.8
Administration fa |-33.8 15.8 | -157.7 0.0 19.3 93 -54 -4.0
Lawyer fl -8.2  -6.4 | -180.6 -19.3 0.0|-15.1 -6.6 4.9
FEducation fe 0.0 155 | -322 -93 15.1 0.0 -37.4 -28.0
Church fe 0.0 0.0 -3.7 5.4 6.6 | 37.4 0.0 -27.9
Self-employed  fs 0.0 6.7 -16.8 4.0 -491| 28.0 279 0.0

3 Obtaining complete solution using simple CA

The results of Figure 3 can be obtained by applying simple CA to the symmetric matrix
S. The skew-symmetric analysis, however, needs specific additional programming which
is easy if a SVD routine is available, for example in statistical languages such as S-PLUS,

Gauss or Matlab. However, in this section we demonstrate that, by setting up the input

11




data in a special format, it is possible to obtain both the symmetric and skew-symmetric
results in one application of simple CA.

If the original square table N is p X p, then the idea is to set up a 2p x 2p block matrix:
= N NT
We now prove that the simple CA of this matrix provides both sets of results in Figures

3 and 4.

The correspondence matrix for N is
= 1P PT
S )
and has row and column sums equal to

wzllwl (12)

21w

It is easily shown that each of the four submatrices of P contributes exactly one quarter
of the inertia on the left hand side of (10), so that the total inertia of P is the same as
the proposed recentered form of the CA:

trace[D;' (P — ww ) DZY(P — ww')"] = trace[D;H(P —ww D} (P —ww')"]

The GSVD of the matrix P — ww T can be assembled from the respective GSVDs of its
submatrices. Suppose that S — ww' and T have GSVDs:

S —ww' =XD,X"  where X'D}'X =1 (13)

T=YD,JY"  whereY'D}'Y =1 (14)

0 1
-1 0
assume that J has an even number of blocks because if p is odd then T has only p — 1

where J is a block diagonal matrix made up of 2 x 2 blocks . (We can always

nonzero singular values.) Note the following properties of J:
J'=-J and J'D,=-D,J (15)

From (9), (11-14), we have:

P—ww' PT—ww'

1
R— X NT — —
P—ww' = 4| PT —ww!' P—ww'
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T TT
T T

1
1
YD,JYT YJI'D,YT
YJ'D,YT YDJYT

]

| XD, X" XD,X"

[ XD,X" XD,X' YD,JY" -YDJYT

[ XD, XT XD, XT ]

| XD\ XT XD,X' ~YD,JYT YD,JY' ] (from (14))

1
4

1 Ly g7
[QX lyJ ]T (16)

1

4
B [%X %YHDA 0]
Ix -y 0 D, Ix -IyJm

This shows how the GSVD of P — wwT is constructed from the symmetric and skew-

T are in descending

symmetric components of P—ww'. Since the singular values of P—ww
order, there will be a re-ordering of the singular values in Dy and D, as well as their
corresponding singular vectors in the solution (16). The normalization can be checked,
remembering that D has the elements of %W twice down its diagonal, so that for example
for the rows:
X 2 o 2 v

=1

T are the

Finally we have to show that the principal coordinates we obtain for P — ww
same as those for P — ww'. From the formulae following equation (2) for the principal
coordinates F, the principal coordinates in the latter case are Fs = Gg = D 'XD, for
the symmetric part and Fy = D;'YD, and Gr = D_'YJ'D, = —-D_'YD,J for the
skew-symmetric part. These coordinates are recovered exactly in the principal coordinates
of the block matrix P — wwT corresponding to its first set of rows and columns. All the
other coordinates are repetitions or 90 degree rotations of these coordinates.

As an example, we set up the 16 x 16 matrix N using Table 1 and performed a simple
CA, using program SimCA (Greenacre 1986). The matrix has a dimensionality of 15, as
always in CA this is one less than the number of rows or number of columns, whichever is
the smaller. Seven of these dimensions correspond to the symmetric CA and eight to the
skew-symmetric CA. The decomposition of the total inertia of 2.2222 (exactly the same

total as the recentered matrix displayed in Figure 2), is as follows:
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Table 4

Decomposition of inertia along principal axes

Principal | Principal | Percentage
axis mertia mertia
1 0.63995 28.80
2 0.50375 22.67
3 0.38072 17.13
4 0.16836 7.58
5 0.14738 6.63
6 0.13920 6.26
7 0.13920 6.26
8 0.06167 2.78
9 0.01423 0.64
10 0.01423 0.64
11 0.00667 0.30
12 0.00667 0.30
13 0.00012 0.01
14 0.00006 0.00
15 0.00006 0.00

Thus the dimensions of the symmetric analysis are numbers 1 to 5, 8 and 13, while the
other dimensions whose inertias occur in pairs are those of the skew-symmetric analysis.

Figures 3 and 4 are thus the maps of dimensions 1 & 2 and 6 & 7 respectively.

4 Discussion

We have illustrated how the CA of a square asymmetric table can fail by trying to accom-
modate two different aspects of the table simultaneously. In our example, the symmetric
part of the table was seen to dominate the CA, with the skew-symmetric part hardly
revealing itself. This is the most typical situation in practice. By splitting the table
into symmetric and skew-symmetric components and analyzing these separately, we can
visualize the phenomena separately, with a gain in interpretability and representation of
information. In order to achieve this, we need to consider a slightly different centering
and metric for the row and column points, so that the symmetric and skew-symmetric
components have the same geometry.

Notice that there is no difference in the number of free parameters between the simple
CA and the symmetric/skew-symmetric analysis. In the former case we arrive at a two-
dimensional map showing the rows and the columns in a joint display. In the latter
case we arrive at separate two-dimensional maps involving one set of points each. It is

valuable to construct the latter pair of maps on the same scale as this gives an idea of the
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