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Abstract

We introduce several exact nonparametric tests for finite sample multivari-

ate linear regressions, and compare their powers. This fills an important gap in

the literature where the only known nonparametric tests are either asymptotic,

or assume one covariate only.

1 Introduction

The question of testing parameters of a linear regression without assumptions beyond

independence on the structure of the noise terms is a long standing one in Economet-

rics. Dating back to White (1980), several asymptotic solutions have been proposed.

Although a large literature focuses on comparing the finite sample performances of

asymptotical tests (see e.g. MacKinnon and White, 1985; Davidson and MacKinnon,

1993), it has already be pointed out that the use of asymptotic bounds for finite

samples can be problematic (Greene, 2002, chapter 11). Exact finite sample non-

parametric tests require the probability of type I errors to be below the specified
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significance level, for a given sample size. Such tests have been provided for one co-

variate by Dufour and Hallin (1993) when error terms are symmetric, and by Schlag

(2008a) without this assumption, but their construction remains an open question for

general linear regressions.

This paper introduces several exact finite sample nonparametric tests for general

regressions and compares their power. In particular, our tests allow to derive exact

confidence intervals for these coefficients. They rely on the knowledge of bounds

on the range of values taken by the dependent variables. The impossibility results

obtained by Bahadur and Savage (1956) and Dufour (2003) show that without such

knowledge, only trivial tests are exact for a given finite sample. In practice, as data

is usually based on outcomes measured on a bounded scale, cases in which the range

of the endogenous variables is unbounded are the exception rather than the rule.

We present three different types of tests that we refer to as “Non-Standardized”,

“Bernoulli”, and “Standardized”. We derive bounds on the probabilities of type II

errors that allow to select the most appropriate test given the sample size and the

specific values of the covariates. We briefly summarize their construction. Each

test relies on a linear combination of the dependent variables (such as in the OLS

method) which is an unbiased estimator of the coefficient to be tested. Each element

of the linear combination is a rescaling of the corresponding dependent variable. It is

useful to think of the estimator as the sum of these independently distributed rescaled

variables with unknown distributions.

The test we call “Non-Standardized” relies on Cantelli’s inequality (Cantelli,

1910), on its strengthening for not too small deviations due to Bhattacharyya (1987),

on a classical inequality of Hoeffding (1963), as well as on the Berry-Esseen inequal-

ity (Berry, 1941; Esseen, 1942; Shiganov, 1986) to bound the tail probabilities of the

sum of the rescaled variables. This allows for the construction of an exact test, and

for bounds on the power of such a test. We then discuss the choice of linear combi-

nation, and present several arguments in favor of using the linear combination that

corresponds to the OLS estimator.

The “Bernoulli” test combines insights used in the mean tests of Schlag (2006,

2008b) with a bound for the sum of independent Bernoulli variables due to Hoeffding

(1956). We first define a randomized test, using a mean preserving transformation
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that maps each rescaled variable into a binary random variable with identical ranges.

In order to determine a critical region for this test, we bound the tails of the distri-

bution of the sum using a result of Hoeffding (1956) showing that the worst case is

attained when all Bernoulli variables are identically distributed. From this random-

ized test, we then define a nonrandomized test by rejecting the null hypothesis if the

probability of rejection of the randomized test is above a specified threshold, thus

following the same method as Schlag (2006, 2008b). A candidate for the linear com-

bination of variables used for this test is the one that minimizes the largest absolute

value of its coefficients, which is the solution of a linear programming problem.

The “Standardized” test relies both on the Berry-Esseen inequality and on a bound

on the difference between the standard deviation of the estimator of the coefficient in

the regression and an estimate thereof. A test statistic is constructed by dividing the

estimator of the coefficient by the estimate of its standard deviation. It is enlightening

to compare this test with that of White (1980). When the coefficient is estimated

using OLS, and under some specification of the parameters defining our test, the test

statistic is asymptotically equivalent to White’s test statistic, and our bounds on the

probability of type I and type II errors converge to those of White. In particular, the

Standardized test performs asymptotically as well as White’s test.

We investigate the performance of the Non-Standardized and the Bernoulli test in

two canonical numerical examples involving one covariate in addition to the constant.

We find that the tests perform well even for small sample sizes (e.g. n = 40). The

Non-Standardized test does best when concerned with sufficiently small type II error

probabilities. It also does best if the sample is suffcieintly large. Remarkably, the

Bernoulli test does better in a variety of intermediate cases when type II error is not

too small and the distribution of the covariates is not too asymmetric.

The Standardized test, which is not directly comparable with the first two, is

expected to perform well in large samples, and when the noise terms of the regression

are small compared to the bound on the exogenous variables.

The paper is organized as follows. Section 2 introduces the model. Sections 3, 4,

and 5 successively introduce the Non-Standardized, Bernoulli and Standardized test.

Section 6 presents numerical examples of applications of the first two. We conclude

in Section 7.
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2 Linear Regression

We consider a linear regression model with fixed regressors, given by

Yi = Xiβ + εi, i = 1, .., n

where Xi is the i-th row of a matrix X ∈ R
n×m, β ∈ R

m and (εi)i is a sequence of

independent, not necessarily identically distributed, random variables with E (εi) = 0.

The error terms (εi)i are unobservable while Y = (Yi)i and X are observable. The

vector of parameters β is unknown to the statistician. We assume uniform bounds

on Yi and take, w.l.o.g., Yi ∈ [0, 1] .

We derive exact tests at the level of significance α for the one-sided hypotheses

H0 : βj ≤ β̄j against H1 : βj > β̄j where β̄j ∈ R. Exact means that the probability

of a type I error of the test is proven to be below the specified significance level α

for the regressors given by X. In particular, bounds on the probabilities of type I

errors do not rely on asymptotic theory. For each test we provide upper bounds on

the probability of type II error, independently of the realized value of Y .

As shown by Pratt (1961), upper bounds on the maximal expected width of the

confidence intervals can be derived from bounds on the probabilities of type II er-

rors. Hence, our tests can be used to construct confidence intervals with guaranteed

coverage.

Each test relies on a linear unbiased estimate β̂j of the coefficient βj by considering

τ j ∈ R
n such that X ′τ j = ej where ejj = 1 and ejk = 0 for k 6= j and setting

β̂j = τ ′jY . The bounds on the probabilities of type II errors can be used to select the

appropriate τ j in each test and to compare the different tests. We let ‖τ j‖2 =
∑

i τ
2
ij ,

and ‖τ j‖∞ = maxi |τ ij|.

3 Non-Standardized Test

Our first test uses β̂j = τ ′jY as test statistic. The test is called “Non-Standardized”

as this test statistic is not divided by an estimate of its standard deviation.

In order to construct the test, we first use classical probability inequalities to

bound the tail distribution of β̂j in Subsection 3.1. Since some of these inequalities

rely on the variance σ2
βj

of β̂j, we present bounds on this variance in Subsection 3.2.
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We then combine these bounds to construct an exact test in Subsection 3.3, and to

bound the probability of type II error of this test in Subsection 3.4. In Subsection

3.5 we present some useful insights for assembling this test. Finally, we discuss the

choice of τ j in Subsection 3.6.

3.1 Tail Bounds

We present four methods for bounding the tail distribution of β̂, based on Cantelli,

Bhattacharyya, Hoeffding and Berry-Esseen’s inequalities.

3.1.1 Cantelli

Cantelli’s inequality (Cantelli, 1910) states that for a random variable Z of variance σ2

and for k > 0:

P
(

Z − EZ ≥ kσ2
)

≤ 1

1 + k2
. (1)

Proposition 1 Let

ϕC(σ, t) =
σ2

σ2 + t2
,

1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕC(σβj
, t̄).

2. For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕC(σβj
, βj − β̄j − t̄).

3. For σ, t > 0, ϕC is increasing in σ, decreasing in t.

Proof. For t̄ > 0 and βj ≤ β̄j , applying Cantelli’s inequality to β̂ shows

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤
σ2

βj

σ2
βj

+ t̄2

= ϕC(σβj
, t̄)
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which is point 1. For t̄ such that βj > β̄j + t̄ we obtain

P
(

β̂j − β̄j < t̄
)

= P
(

−β̂j + βj > βj −
(

β̄j + t̄
)

)

≤
σ2

βj

σ2
βj

+ (βj − β̄j − t̄)2

= ϕC(σβj
, βj − β̄j − t̄)

which is point 2. Point 3 is immediate.

3.1.2 Bhattacharyya

The inequality due Bhattacharyya (1987) strengthens Cantelli’s inequality using the

third and fourth moments of the distribution as follows. Consider a random variable

Z with EZ = 0 and variance σ2, and let γ1 = EZ3

σ3 and γ2 = EZ4

σ4 . If k2 − kγ1 − 1 > 0

then

Pr (Z ≥ kσ) ≤ γ2 − γ2
1 − 1

(γ2 − γ2
1 − 1) (1 + k2) + (k2 − kγ1 − 1)2 . (2)

The condition k2 −kγ1 −1 > 0 imposes that k has to be large enough, hence (2) only

applies for deviations that are not too small.

Proposition 2 Let

ϕY (σ, t) =



















2σ4

3σ4−2σ2+t4
if σ2 ≤ t2‖τ j‖∞

‖τ j‖∞+2t
and t2

σ2 − t‖τ j‖∞
σ2 − 1 > 0

2σ4

2σ2(σ2+t2)+(t2−t‖τ j‖∞−σ2)
2 if σ2 >

t2‖τ j‖∞
‖τ j‖∞+2t

and t2

σ2 − t‖τ j‖∞
σ2 − 1 > 0

1 if t2

σ2 − t‖τj‖∞
σ2 − 1 ≤ 0

1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕY (σβj
, t̄).

2. For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕY (σβj
, βj − β̄j − t̄).

3. For σ, t > 0 such that t2

σ2 − t‖τ j‖∞
σ2 − 1, ϕY is increasing in σ, decreasing in t.

Before applying inequality (2) to Z = β̂j − βj we bound the corresponding values of

γ1 and γ2.
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Lemma 1

E
(

β̂j − βj

)3

σ3
βj

≤ ‖τ j‖∞
σβj

(3)

and

E
(

β̂j − βj

)4

σ4
βj

≤ 3.

Proof. Using the polynomial expansion, and E(Xiβ − Yi) = 0 for every i, we obtain

E
(

β̂j − βj

)3

=
∑

i

τ 3
ijE (Xiβ − Yi)

3 .

Since |Xiβ − Yi| ≤ 1, we obtain

γ1 =
E
(

β̂j − βj

)3

σ3
βj

=

∑

i τ
3
ijE (Xiβ − Yi)

3

σ3
βj

≤ ‖τ j‖∞
∑

i τ
2
ijE (Xiβ − Yi)

2

σ3
βj

=
‖τ j‖∞
σβj

.

Using the polynomial expansion again, we get

E
(

β̂j − βj

)4

=
∑

i

τ 4
ijE (Xiβ − Yi)

4 + 3
∑

i6=k

τ 2
ijE (Xiβ − Yi)

2 τ 2
kjE (Xkβ − Yk)

2

and
(

∑

i

τ 2
ijE (Xiβ − Yi)

2

)2

=
∑

i

τ 4
ijE (Xiβ − Yi)

4+
∑

i6=k

τ 2
ijE (Xiβ − Yi)

2 τ 2
kjE (Xkβ − Yk)

2 .

From this we derive

E
(

β̂j − βj

)4

= 3

(

∑

i

τ 2
ijE (Xiβ − Yi)

2

)2

− 2
∑

i

τ 4
ijE (Xiβ − Yi)

4

and hence

γ2 =
E
(

β̂j − βj

)4

σ4
βj

=
3
(
∑

i τ
2
ijE (Xiβ − Yi)

2)2 − 2
∑

i τ
4
ijE (Xiβ − Yi)

4

σ4
βj

≤ 3 .

Proof of Proposition 2. For the proof of point 1, we need only to consider the

case where t̄2

σ2 − t̄‖τ j‖∞
σ2 − 1 > 0, in which we can apply (2) to β̂j − βj :

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤ γ2 − γ2
1 − 1

(γ2 − γ2
1 − 1)

(

1 +
(

t̄
σβj

)2
)

+

(

(

t̄
σβj

)2

−
(

t̄
σβj

)

γ1 − 1

)2

≤ 2 − γ2
1

(2 − γ2
1)

(

1 + t̄2

σ2

βj

)

+

(

t̄2

σ2

βj

− t̄
σβj

γ1 − 1

)2 . (4)
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We maximize (4), which is concave in γ1, over all γ1 ≤
‖τ j‖∞

σβj

, holding σβj
and ‖τ j‖∞

fixed, and obtain

P
(

β̂j − β̄j ≥ t̄
)

≤































2

3−2 t̄2

σ2

βj

+ t̄4

σ4

βj

if σ2
βj

≤ t̄2‖τ j‖∞
‖τj‖∞+2t̄

2−
‖τj‖2

∞

σ2

βj
0

@2−
‖τj‖2

∞

σ2

βj

1

A

 

1+ t̄2

σ2

βj

!

+

 

t̄2

σ2

βj

−
t̄‖τj‖

∞

σ2

βj

−1

!2 if σ2
βj

≥ t̄2‖τ j‖∞
‖τj‖∞+2t̄

= ϕY (σβj
, t̄)

which is point 1. The proof of point 2 is similar, and point 3 comes from the fact that

both functionals defining ϕY when t2

σ2 − t‖τj‖∞
σ2 − 1 are increasing in σ, decreasing in

t, and coincide when σ2 =
t2‖τ j‖∞
‖τj‖∞+2t

.

3.1.3 Hoeffding

We recall an inequality due to Hoeffding (1963, Theorem 2). Let (Zi)
n
i=1 be inde-

pendent random variables with Zi ∈ [ai, bi] for i = 1, .., n, and Z̄ = 1
n

∑n
i=1 Zi. For

t̄ > 0,

P
(

Z̄ − EZ̄ ≥ t̄
)

≤ exp

(

− 2n2t̄2
∑n

i=1 (bi − ai)
2

)

. (5)

Relying on Hoeffding’s inequality we show:

Lemma 2 Let

ϕH(t) = exp

(

− 2t2

‖τ j‖2

)

.

1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕH(t̄).

2. For t̄ > 0 such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕH(βj − β̄j − t̄).

3. For t > 0, ϕH is decreasing in t.
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Proof. We apply Hoeffding’s inequality to (Zi)i where Zi = nτ ijYi. So Zi ∈ [0, nτ ij ]

for τ ij ≥ 0 and Zi ∈ [nτ ij , 0] for τ ij < 0. For βj ≤ β̄j:

P (β̂j − β̄j ≥ t̄) ≤ P (τ ′jY − βj ≥ t̄)

≤ exp

(

− 2n2t̄2
∑

i(nτ ij)2

)

= exp

(

− 2t̄2

‖τ j‖2

)

which is point 1. The proof of point 2 is similar, and point 3 is immediate.

3.1.4 Berry-Esseen

We recall the Berry-Esseen inequality (Berry, 1941; Esseen, 1942) with the constant

as derived by Shiganov (1986). Let (Zi)1≤i≤N be a family of independent random

variables with V ar(Zi) = σ2
i . For ū ∈ R,

∣

∣

∣

∣

∣

∣

P





∑N
i=1 (Zi −EZi)
√

∑N
i=1 σ

2
i

≤ ū



− φ (ū)

∣

∣

∣

∣

∣

∣

≤ A
(

∑N
i=1 σ

2
i

)3/2

N
∑

i=1

E |Zi − EZi|3 (6)

where A = 0.7915 and φ is the cumulative density function of the standard normal

distribution.

Using the Berry-Esseen inequality, we show

Proposition 3 Let

ϕBE(σ, t) = inf
w>0,b1∈R

1 − φ
(

t−b1√
σ2+w2

)

+ A
2‖τ j‖∞√

27w

φ (b1/w)
.

1. For t̄ > 0 and βj ≤ β̄j,

P
(

β̂j − β̄j ≥ t̄
)

≤ ϕBE(σβj
, t̄).

2. For t̄ such that βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ ϕBE(σβj
, βj − β̄j − t̄).

3. For σ, t > 0, ϕBE is increasing in σ, decreasing in t.
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The idea of the proof of Lemma 3 is to apply (6) to the random variables Zi =

τ ijYi. However, a difficulty arises from the fact that the right hand side in (6) is

unbounded as a there is no lower bound on
∑n

i=1 σ
2
i = σ2

βj
. Our solution to this is to

add additional random variables with known distribution to the family (Zi)1≤i≤N to

guarantee such a lower bound. We eliminate this noise in a later step.

Lemma 3 Let w > 0, ū ∈ R. With Z ∼ N (0, w2) independent of (Yi)i, and

R (w) =

∑

i |τ ij |3E |Yi −EYi|3
(
∑

i τ
2
ijσ

2
i + w2

)3/2
,

we have

P





β̂j − βj + Z
√

σ2
βj

+ w2
≥ ū



 ≤ 1 − φ (ū) + AR (w) .

Proof. We apply (6) to the family of random variables Z1, ..., Zn+N where Zi = τ ijYi

for i ≤ n and Zi ∼ N
(

0, w2

N

)

for n+1 ≤ i ≤ n+N . Let K = E |δ|3 for δ ∼ N (0, w2).

The right hand side in (6), up to the multiplicative constant A, becomes

∑n
i=1 |τ ij |3 E |Yi −EYi|3 +KN

(

w/
√
N
)3

(
∑n

i=1 τ
2
ijσ

2
i + w2

)3/2
.

As N → ∞ this decreases and converges to R(w), and the claim follows from (6).

Next we use Lemma 3 to obtain a bound on the upper tail of β̂j − βj.

Lemma 4

P
(

β̂j − βj ≥ t̄
)

≤
1 − φ

(

t̄−b1
q

σ2

βj
+w2

)

+ AR (w)

φ (b1/w)
.

Proof. We use the fact that P (W1 +W2 ≥ ū) ≥ P (W1 ≥ −b1)P (W2 ≥ ū+ b1) holds

for all b1, ū and independent random variables W1 and W2. In our case, we write:

P
(

β̂j − βj + Z ≥ ū
√

σ2
βj

+ w2
)

= P
(

β̂j − βj ≥ ū
√

σ2
βj

+ w2 + b1

)

φ (b1/w) .

Applying this to ū = t̄−b1
q

σ2

βj
+w2

and combining with Lemma 3 yields the result.

Our next task is to provide an upper bound on R(w).

Lemma 5

R(w) ≤ 2 ‖τ j‖∞√
27w

.
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Proof. Using E |Yi −EYi|3 ≤ σ2
i , |τ ij |3 ≤ ‖τ j‖∞ τ 2

ij , and that for x ≥ 0,

x

(x+ w2)3/2
≤ 2√

27w
,

we derive

R (w) =

∑

i |τ ij|3E |Yi − µi|3
(
∑

i τ
2
ijE (Yi − µi)

2 + w2
)3/2

≤ ‖τ j‖∞
∑

i |τ ij|2E (Yi − µi)
2

(
∑

i τ
2
ijE (Yi − µi)

2 + w2
)3/2

≤ 2 ‖τ j‖∞√
27w

. (7)

Proof of Proposition 3. Using Lemmata 4 and 5, we obtain that for βj ≤ β̄j:

P
(

β̂j − β̄j ≥ t̄
)

≤ P
(

β̂j − βj ≥ t̄
)

≤ inf
w>0,b1∈R

1 − φ

(

t̄−b1
q

σ2

βj
+w2

)

+ A
2‖τ j‖∞√

27w

φ (b1/w)

which is point 1. For point 2, we apply point 1 to Y ′ = 1n − Y . For βj such that

βj > β̄j + t̄,

P
(

β̂j − β̄j < t̄
)

≤ P
(

τ ′jY − β̄j ≤ t̄
)

= P
(

τT
j (1n − Y ) −

(

τT
j 1n − βj

)

≥ βj − β̄j − t̄
)

≤ ϕBE(σβj
, βj − β̄j − t̄).

Point 3 is immediate.

3.2 Bounds on σβj

In order to construct a test and bound its power based on the inequalities presented

in Subsections 3.1.1 to 3.1.4, we need both a bound on σβj
under the null hypothesis,

and a bound on σβj
as a function of the unknown parameter βj. Therefore we let

σ̄2
βj

= σ̄2
βj

(βj) = max

n
∑

i=1

τ 2
ijV ar(Yi),
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where the maximum is taken over z ∈ R
m with zj = βj and all random variables

Yi with values in [0, 1] such that EYi = Xiz. It is easy to see that one can restrict

attention to Bernoulli random variables, so that

σ̄2
βj

= max
z∈Rm

{

∑

i

τ 2
ijXiz (1 −Xiz) : zj = βj, Xz ∈ [0, 1]n

}

.

The above expression shows that σ̄2
βj

can easily be computed numerically. Also,

let

σ̄0,βj
= max

βj≤β̄j

σ̄βj

(

βj

)

.

The following lemma, proven in Appendix A, provides upper bounds on σ̄βj
and

σ̄0,βj
.

Lemma 6

σ̄2
βj

≤ 1

4
‖τ j‖2 − 1

n

(

βj −
1

2

∑

i

τ ij

)2

and

σ̄2
0,βj

≤ ‖τ j‖2

4
.

Note that when the first regressor is constant, i.e., when Xi1 = 1 for all i, we have
∑

i τ i1 = 1 and
∑

i τ ij = 0 for j > 1, so that the above bound on σ̄2
βj

only depends on

τ j through ‖τ j‖, and is decreasing in ‖τ j‖. Appendix A also presents tighter bounds

on σ̄βj
and σ̄0,βj

.

3.3 Test Cutoff

Let

ϕ(σ, t) = min {ϕC(σ, t), ϕY (σ, t), ϕH(t), ϕBE(σ, t)} .

It follows from Propositions 1-3 and from the definition of σ̄0,βj
that, under H0 and

for t > 0:

P (β̂j − β̄j ≥ t̄) ≤ ϕ(σ̄0,βj
, t̄).

ϕ is continuously decreasing in t̄, limt̄→0 ϕ(σ̄0,βj
, t̄) = 1, and limt̄→∞ ϕ(σ̄0,βj

, t̄) = 0.

Hence, for 0 < α < 1, there is a unique solution t̄N to ϕ(σ̄0,βj
, t̄) = α. We define the

Non-Standardized test as the one that rejects the null hypothesis when β̂j − β̄j ≥ t̄N .

This is an exact test with the probability of a type I error bounded above by α.
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3.4 Type II Error

Given βj > β̄j + t̄N , the following bound on the type II error probability follows from

Propositions 1-3, from the definition of σ̄βj
and of t̄N :

P
(

β̂j − β̄j < t̄N

)

≤ ϕ
(

σ̄βj
, βj − β̄j − t̄N

)

. (8)

3.5 Computation

The value of σ̄βj
used in the construction of the test can be computed numerically.

Alternatively, one can use upper bounds on these in order to define the test. For

instance, relying on Lemma 6, one can replace σ̄2
0,βj

by 1
4
‖τ j‖2 in the definition of ϕ,

thus obtaining a larger value for t̄N . By doing so, one obtains an exact test which is

less powerful, but more easily computable. With this replacement, the bound on the

probability of a type I error derived using Cantelli’s inequality is not binding in the

equation determining t̄N if α < 0.284. To see this, assume that t̄N is binding under

the bound derived from Cantelli’s inequality. Then

ϕC(
‖τ j‖

2
, t̄N ) =

1
4
‖τ j‖2

1
4
‖τ j‖2 + t̄2N

= α,

hence t̄N = 1
2

√

1−α
α

‖τ j‖ and

ϕH(t̄N ) = exp

(

− 2t̄2N
‖τ j‖2

)

= exp

(

−1 − α

2α

)

≥ α,

which implies that α > 0.284.

Similarly, using the fact that σ̄2
βj

≤ ‖τ j‖2 /4 holds for all σ̄βj
, it follows that the

bound on the type II error probability of the Non-Standardized test is not determined

by Hoeffding’s inequality if the type II error of the Non-Standardized test is above

0.285. Indeed,

ϕC(σ̄βj
, βj − β̄j − t̄N) ≤ ϕC(

‖τ j‖
2

, βj − β̄j − t̄N) < ϕH(βj − β̄j − t̄N )

holds if ϕH(βj − β̄j − t̄N) > 0.285.

Finally, note that a necessary condition for Bhattacharyya’s inequality to be ap-

plied, for type I or for type II error probability, is that the bound derived using
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Cantelli’s inequality is below 0.5. This is because

z2

σ2
βj

− z ‖τ j‖∞
σ2

βj

− 1 > 0

implies that z > σβj
, and hence that ϕC(σβj

, z) < 0.5.

3.6 Choice of τ j

In what precedes, τ j is an unspecified vector with the property that X ′τ j = ej .

An appropriate choice of τ j is one that minimizes the bound on the probability of

type II error provided by (8). Examination of (8) shows that one would ideally

simultaneously want τ j to minimize the rejection threshold t̄N , σ̄βj
, ‖τ j‖, and ‖τ j‖∞,

in order to minimize t̄N , τ j should minimize σ̄0,βj
, ‖τ j‖,and ‖τ j‖∞.

These conditions are intuitive. A good unbiased estimator is one with minimal

variance, hence minimization of σ̄0,βj
and σ̄βj

. In the homoskedastic case, the unbi-

ased estimator with minimal variance, i.e., the OLS estimator, is also the one that

minimizes ‖τ j‖. Finally, minimizing ‖τ j‖∞ can be interpreted as a condition that no

single observation should be too influential.

Except in some particular cases of interest, including the examples studied in

Section 6, we do not provide explicit formulas for σ̄0,βj
and σ̄βj

, but these can be

computed as the solutions of simple maximization problems.

The best choice of τ j can also be computed numerically. We provide some heuristic

arguments that are confirmed in the numerical examples presented in Section 6. A

natural choice is to choose τ j to minimize the rejection threshold t̄N and to only

consider the bounds on the probabilities of type II errors thereafter. As shown in

the previous section, when α < 0.284 then the bound on probability of type I error

derived from Cantelli’s inequality is never binding. Berry-Esseen’s inequality targets

small and moderate deviations while Hoeffding’s inequality concerns large deviations.

Hence, we expect that the bound based on Hoeffding’s inequality is lower then that

under Berry-Esseen’s inequality even when τ j is chosen so as to minimize the latter.

Bhattacharyya’s inequality, as a variant of Cantelli’s, relies heavily on ‖τ j‖ being

small when σ̄0,βj
is bounded by ‖τ j‖/2 as in Lemma 6. Anticipating that either

Hoeffding’s inequality or Bhattacharyya’s inequality with minimal ‖τ j‖ is best at

minimizing t̄N , one needs to choose ‖τ j‖ minimal, hence as in the OLS estimator.



15

The discussion above indicates that the choice of τ j corresponding to the OLS

estimator, e′j(X
′X)−1X ′, is a good choice when using the Non-Standardized test. It

has the additional advantage that results are easily comparable to those based on

tests that assume normally distributed errors. Under this choice of τ j the cutoff t̄

derived from Hoeffding’s inequality (see point 1 of Lemma 2) for determining whether

or not to reject the null hypothesis at significance level α is given by
√

− lnα

2
(X ′X)−1

jj . (9)

4 Bernoulli Test

In this section we build on an exact test of Schlag (2006) for testing the mean of a

random variable with bounded support based on an independent sample. We extend

this test to nonidentically distributed random variables with bounded support and

apply it to our linear unbiased estimate by interpreting the estimate as an average.

Consider τ j ∈ R
n such that X ′τ j = ej. Let d ∈ R

n and Zi = n (τ ijYi + di). Then

(Zi)i are independently distributed with EZ̄ = βj + ds where Z̄ = 1
n

∑

i Zi and ds =
∑

i di. Let a = nmin {di, τ ij + di : i = 1, .., n} and b = nmax {di, τ ij + di : i = 1, .., n}.
Then Zi ∈ [a, b] for all i.

We first construct a test given τ j and d, and later discuss the choice of these

parameters.

Let f be a random transformation on the domain [a, b] defined by

P (f (z) = 1) =
z − a

b− a
and P (f (z) = 0) =

b− z

b− a
,

and let Wi = f(Zi). Then (Wi)i is an independent, not necessarily identically dis-

tributed, sequence of random variables withWi ∈ {0, 1} and EW̄ =
(

EZ̄ − a
)

/ (b− a)

where W̄ = 1
n

∑

iWi.

We successively construct a randomized test, that depends on the realization of

(Wi)i given (Yi)i, and a non-randomized test, that only depends on (Yi)i.

4.1 A Randomized Test

In this subsection, we construct a randomized test based on one realization of the

family (Wi)i. Given βj, we let pβj
denote the expected proportion of 1’s in (Wi)i, it



16

is given by

pβj
= EW̄ =

βj + ds − a

b− a
.

Let p̄ = pβ̄j
. The null hypothesis H0 : βj ≤ β̄j can be restated as

H0 : EW̄ ≤ p̄.

The family (Wi)i is a family of independent, non identically distributed Bernoulli

random variables. Relying on a result of Hoeffding (1956), we show that testing for

H0 reduces to testing for the probability of success in a binomial distribution, hence

to the case in which (Wi)i is i.i.d.. For 0 < p < 1 and k ∈ {0, ..., n}, we let

B(k, p) =
n
∑

i=k

(

n

i

)

pi(1 − p)n−i.

Proposition 4 For α′ > 0, let k̄ = k̄(p̄, α′) be the smallest integer such that B(k̄, p̄) ≤
α′. Let

rα′(W̄ ) =



















1 if nW̄ ≥ k̄
α′−B(k̄,p̄)

B(k̄−1,p̄)−B(k̄,p̄)
if nW̄ = k̄ − 1

0 if nW̄ ≤ k̄ − 2

and let

ψ0(k, p, α
′) = 1 − rα′

(

k − 1

n

)

B(k − 1, p) −
(

1 − rα′

(

k − 1

n

))

B(k, p).

Assume k̄ > np̄+ 1.

1. If βj ≤ β̄j then Erα′(W̄ ) ≤ α′.

2. If pβj
> k̄/n then

Erα′(W̄ ) ≥ 1 − ψ0(k̄, pβj
, α′).

Consider a randomized test that rejectsH0 with probability rα′(W̄ ). Point 1 shows

that the type I error probability of this test is bounded by α′. A bound on the type

II error probability is given by point 2.

Observe that rα′(W̄ ) is the rejection probability under the randomized binomial

test for testing p ≤ p̄ against p > p̄ at level α′ given n i.i.d. observations, using the

most powerful test derived from the Neyman-Pearson lemma (see, e.g., Lehmann and

Romano, 2005, Example 3.4.2).
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Proof. Theorem 5 in Hoeffding (1956) shows that, if k ≥ nEW̄ , then P (nW̄ ≥ k) ≤
B(k, EW̄ ). Similarly, if k < nEW̄ , then P (nW̄ ≥ k) ≥ B(k, EW̄ ).

Now we prove point 1. With λ = rα′((k̄ − 1)/n), 0 ≤ λ < 1 and

rα′(W̄ ) = λ1nW̄≥k−1 + (1 − λ)1nW̄≥k.

Assume that EW̄ ≤ p̄. Then k̄ − 1 > nEW̄ . Taking expectations in the previous

equation, using Hoeffding’s inequality and the fact that B(k, p) is increasing in p, we

obtain

Erα′(W̄ ) = λP (nW̄ ≥ k − 1) + (1 − λ)P (nW̄ ≥ k)

≤ λB(k̄ − 1, EW̄ ) + (1 − λ)B(k̄, EW̄ )

≤ λB(k̄ − 1, p̄) + (1 − λ)B(k̄, p̄) = α′.

Point 2 follows as EW̄ > k̄/n implies:

Erα′(W̄ ) = λP (nW̄ ≥ k − 1) + (1 − λ)P (nW̄ ≥ k)

≥ λB(k̄ − 1, EW̄ ) + (1 − λ)B(k̄, EW̄ ).

4.2 Non-Randomized Bernoulli Test

The randomized test of Subsection 4.1 relies on one realization of the family (Wi)i,

drawn from (Yi)i to decide whether or not to rejectH0. Given Y = (Yi)i, E(rα′(W̄ )|Y )

is the probability that this randomized test rejects the null hypothesis at significance

level α′, conditional on the observation of (Yi)i. Note that E(rα′(W̄ )|Y ) is a function

of Y , hence is known to the observer.

As in Schlag (2006, 2008b), we use Markov’s inequality (first appearing in Bien-

aymé, 1853) to construct a nonrandomized test from the randomized test.

Proposition 5 For 0 < θ < 1, let α′ = θα and let ψ(τ j , d, θ) = ψ0(k̄, pβj
, θα).

Assume k̄ > np̄+ 1.

1. If βj ≤ β̄j then P (E(rα′(W̄ )|Y )) ≥ θ) ≤ α,
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2. for βj > β̄j,

P (E(rα′(W̄ )|Y )) < θ) ≤ ψ(τ j , d, θ)

1 − θ
.

Define the Bernoulli test as the test that rejects H0 if E(rα′(W̄ )|Y )) ≥ θ. Point 1

shows that this is an exact test with significance level α, and point 2 provides a bound

on the type II error probability.

Proof. For point 1, let βj ≤ β̄j. From point 1 of Proposition 5, E(rα′(W̄ )|Y ) ≤ θα.

Applying Markov’s inequality to the non-negative random variable E(rα′(W̄ )|Y ) of

expectation Erα′(W̄ ) shows

P (E(rα′(W̄ )|Y )) ≥ θ) ≤ Erα′(W̄ )

θ
≤ α.

For point 2, we apply Markov’s inequality to 1 − E(rα′(W̄ )|Y ):

P (E(rα′(W̄ )|Y )) < θ) = P (1 − E(rα′(W̄ )|Y ) > 1 − θ) ≤ 1 −Erα′(W̄ )

1 − θ
,

which together with point 2 of Proposition 5 implies the result.

4.3 Choice of the Parameters

The last step is to choose the parameters θ, τ j and d used in the construction of

the Bernoulli test to minimize the bound on type II error probability presented in

Proposition 5 for given βj with βj > β̄j.

Recall that the bound on the type II error probability provided by Proposition 5

point 2 is the multiple 1/(1 − θ) of the type II error probability of the randomized

binomial test with significance level θα for testing p ≤ pβ̄j
against p > pβ̄j

, where the

type II error probability is evaluated at p = pβj
. As such, the bound on the type II

error probability of the Bernoulli test only depends on θ, pβ̄j
, pβj

, α and n, where

pβ̄j
= (β̄j + ds − a)/(b− a) and pβj

− pβ̄j
= (βj − β̄j)/(b− a). While pβ̄j

and pβj
are

invariant to adding a constant ε to each di, this translation increases a by nε, so we

can assume w.l.o.g. that a = 0. It follows that b ≥ n ‖τ j‖∞. In fact, for given τ j

and b0 with b0 ≥ n ‖τ j‖∞ one can find d such that b = b0 where −τ ij ≤ di ≤ b0/n

if τ ij < 0 and 0 ≤ di ≤ b0/n − τ ij for τ ij ≥ 0, and where d is unique if and only if

|τ ij | = ‖τ j‖∞ = b0/n for all i. It follows that

β̄j +
∑

i:τij<0 |τ ij |
b

≤ pβ̄j
≤ 1 +

β̄j −
∑

i:τ ij≥0 τ ij

b
=: ph
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where any value of pβ̄j
within this range can be attained for appropriate choice of d.

We do not provide a formal analysis of how to choose d and τ j , instead only discuss

some of the tradeoffs involved. It is natural to choose d such that b = n ‖τ j‖∞ as this

means that there is no excessive rescaling of the random variables τ ijYi. Lowering

b increases the distance pβj
− pβ̄j

between the null hypothesis and the value of pβj

at which the type II error probability is evaluated. If b can be lowered while leaving

ds, and hence pβ̄j
, unchanged, then this will decrease the type II error probability.

However, it may not be possible to lower b without lowering pβ̄j
when pβ̄j

= ph, which

is the case in our numerical examples.

Note that b is bounded below by n
∥

∥τ ∗j
∥

∥

∞ where τ ∗j solves minτ j∈Rn{‖τ j‖∞ :

X ′τ j = ej}. τ ∗j is obtained as the solution of a linear programming problem, hence

is easily computable.1 For the special case where Xi1 = 1 for all i and m = j = 2

we have a closed form solution for τ ∗2. Assume that n is even (the case of n odd is

similar) and that Xi2 is increasing in i. Let

T =
1

∑n
i=n/2+1Xi2 −

∑n/2
i=1Xi2

. (10)

Then τ ∗i2 = T for i > n/2 and τ ∗i2 = −T for i ≤ n/2 with ‖τ ∗2‖∞ = T .

5 Standardized Test

In this section we derive a test that relies on an estimate s2
βj

of the variance σ2
βj

of β̂j .

The construction of the test is similar to how we proceed in Subsection 3.1.4, with

the only major difference that instead of relying on a uniform bound on σ2
βj

to derive

bounds on the probabilities of type I and type II errors, we rely on s2
βj

.

In order to estimate σ2
βj

=
∑

i τ
2
ijE(Yi − Xiβ)2, we rely on an estimator of β.

Thus, we consider any τ = (τ 1, .., τm) where for every k, X ′τk = ek. For such τ ,

β̂ = τ ′Y is an unbiased estimator of β, Eβ̂ = β. Following White (1980), we estimate

σ2
βj

by s2
βj

=
∑

i τ
2
ijE(Yi − Xiβ̂)2. We control for the quality of this estimate, using

the following lemma proven in the appendix.

1
∥

∥τ∗
j

∥

∥

∞
= minτj∈Rn{‖τ j‖∞ : X ′τ j = ej} if and only if

∥

∥τ∗
j

∥

∥

∞
= minτj∈Rn,q≥0{q : τ ij ≤ q, τ ij ≥

−q, X ′τ j = ej}.
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Let ‖Xi‖1 =
∑m

k=1 |Xik|, and

c0 = max
Y ∈[0,1]n

∑

i

τ 2
ij (|Xiτ

′Y | + 2) ‖Xi‖1.

Lemma 7

P
(

s2
βj

+ a2 ≤ σ2
βj

)

≤ min
λ∈[0,1]

{

2 exp

(

−2
λ2a4

c20‖τ k‖2

)

+ exp

(

−2
(1 − λ)2a4

∑

i τ
4
ij

)}

= : c3(a).

We choose a test statistic that depends on parameters a1, w, b1 with a1, w > 0

and is given by:

tS =
β̂j − β̄j − b1
√

s2
βj

+ a2
1 + w2

,

and define the threshold value t̄S by

t̄S = φ−1 (1 − (α− c3 (a1))φ(b1/w) + AR(w))

with the convention that t̄S = +∞ if 1 − (α− c3 (a1))φ(b1/w) + AR(w) ≥ 1.

Define the Standardized test as the test that rejects H0 when tS ≥ t̄S. The next

proposition shows that this is an exact test at the level α, and gives a bound on the

type II error probability.

Proposition 6 1. If βj ≤ β̄j and b1 ≤ β̂j − β̄j then

P (tS ≥ t̄S) ≤ α.

2. For a2 > 0 and b2, let

ūS = t̄S

√

σ2
βj

+ w2 + a2
1 + a2

2

√

σ2
βj

+ w2
+
b1 + b2 + β̄j − βj
√

σ2
βj

+ w2
.

If βj > β̄j + t̄S then

P (tS < t̄S) ≤ φ(ūS) + AR(w)

φ(b2/w)
+ c3 (a2) . (11)
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Proof. Using Lemma 7 we obtain:

P





β̂j − βj − b1
√

s2
βj

+ w2 + a2
1

≥ t̄S





≤ P





β̂j − βj − b1
√

σ2
βj

+ w2
≥ t̄S, s

2
βj

+ a2
1 ≥ σ2

βj



+ P
(

s2
βj

+ a2
1 < σ2

βj

)

≤ P





β̂j − βj − b1
√

σ2
βj

+ w2
≥ t̄S



+ c3 (a1) . (12)

Let Z ∼ N (0, w2) with Z independent of Y . From Lemma 3,

P (Z > −b1)P





β̂j − βj − b1
√

σ2
βj

+ w2
≥ t



 ≤ P





β̂j − βj + Z
√

σ2
βj

+ w2
≥ t





≤ 1 − φ (t) + AR (w) .

Hence

P





β̂j − βj − b1
√

σ2
βj

+ w2
≥ t



 ≤ 1 − φ(t) + AR(w)

φ(b1/w)
. (13)

Combining equations (12) and (13), we obtain that for βj ≤ β̄j :

P





β̂j − β̄j − b1
√

s2
βj

+ a2
1 + w2

> t̄S



 ≤ P





β̂j − βj − b1
√

s2
βj

+ a2
1 + w2

≥ t̄S





≤ 1 − φ(t̄S) + AR(w)

φ(b1/w)
+ c3 (a1)

≤ α.
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which is point 1 of the proposition. For point 2 we first derive

P





β̂j − β̄j − b1
√

s2
βj

+ a2
1 + w2

≤ t̄S





= P





β̂j − βj + b2
√

σ2
βj

+ w2
≤ t̄S

√

s2
βj

+ a2
1 + w2

√

σ2
βj

+ w2
+
b1 + b2 + β̄j − βj
√

σ2
βj

+ w2





≤ P





β̂j − βj + b2
√

σ2
βj

+ w2
≤ t̄S

√

σ2
βj

+ w2 + a2
1 + a2

2

√

σ2
βj

+ w2
+
b1 + b2 + β̄j − βj
√

σ2
βj

+ w2
, s2

βj
≤ σ2

βj
+ a2

2





+ P (s2
βj
> σ2

βj
+ a2

2)

≤ P





β̂j − βj + b2
√

σ2
βj

+ w2
≤ ūS



 + c3 (a2) . (14)

We use Lemma 3 and the de-randomization technique of Lemma 4 again. Letting

Z ∼ N (0, w2),

P (Z < b2)P





β̂j − βj + b2
√

σ2
βj

+ w2
≤ ūS



 ≤ P





β̂j − βj + Z
√

σ2
βj

+ w2
< ūS





≤ φ(ūS) + AR(w).

Hence

P





β̂j − βj + b2
√

σ2
βj

+ w2
≤ ūS



 ≤ φ(ūS) + AR(w)

φ(b2/w)
. (15)

Combining (14) and (15) we finally obtain:

P





β̂j − β̄j − b1
√

s2
βj

+ a2
1 + w2

≤ t̄S



 ≤ φ(ū) + AR(w)

φ(b2/w)
+ c3 (a2) .

The different parameters a1, a2 b1, b2, w and τ used in the construction of the Stan-

dardized test can be chosen in order to minimize the bound (11) on the probability

of type II error given α.

5.1 Asymptotics

The aim of this subsection is to show that, for a particular choice of parameters a1,

a2, w and τ , the test statistic, the rejection zone of the Standardized test are asymp-
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totically equivalent to the widely used asymptotic test of White (1980). Furthermore,

the bound on the probability of type II errors is asymptotically no worse than using

White’s test. To prove this last point, we show that for a particular choice of a2, b2,

the bound on type II error in point 2 of Proposition 6 is asymptotically equivalent to

that of White.

We assume that all regressors are bounded, w.l.o.g., |Xi,j| ≤ 1, and that det(X′X
n

)−1 >

δ for some δ > 0 and n large enough, so that there exists K such that ‖
(

X′X
n

)−1 ‖∞ ≤
K. Since we are in the fixed regressor case, these assumptions are implied by As-

sumption 2 of White (1980).

We also assume (Assumption 3 b in White (1980)) that the average covariance

matrix V̄ = 1
n

∑

iE(Yi −Xiβ)2X ′
iXi is such that det(V̄ ) > δ for n large enough.

Let β̂j be the OLS estimator of βj, hence let τ j = e′j(X
′X)−1X ′. Under the

assumptions above, ‖τ j‖∞ ≤ mK
n

. We choose the parameters a1 = a1(n), b1 = b1(n),

and w = w(n) such that b1 = n−0.6, w = a1 = n−2/3.

Recall that White’s test statistic is tW =
β̂j−β̄j

sβj

, while our test statistic is

tS =
β̂j − β̄j − b1
√

s2
βj

+ a2
1 + w2

.

Point 1 of Theorem 1 below shows that the two test statistics tW and tS are asymp-

totically equivalent.

Point 2 of Theorem 1 establishes the convergence of the rejection threshold t̄S of

the Standardized test to φ−1(1 − α), the rejection threshold for White’s test.

Finally, fix CW > 0 and consider a sequence (Yn)n, hence implicitly also a sequence

of βj and σβj
, such that along this sequence the probability of type II error computed

from White’s asymptotic normal approximation equals CW :

φ

(

φ−1(1 − α) +
β̄j − βj

σβj

)

= CW .

Set a2 = a1, b2 = b1. Along this sequence of underlying parameters, point 2 of

Proposition 6 shows that the type II error probability of the Standardized test is

bounded above by:

CS =
φ(ūS) + AR(w)

φ(b2/w)
+ c3(a1)
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where

ūS = t̄S

√

σ2 + w2 + a2
1 + a2

2
√

σ2
βj

+ w2
+
b1 + b2 + β̄j − βj
√

σ2
βj

+ w2

Point 3 of Theorem 1 shows the convergence of CS to CW , so that the two formulas

asymptotically give the same power.

Theorem 1 When n→ ∞,

1. for every βj
tS
tW

→ 1 a.s. ,

2.

t̄S → φ−1(1 − α) ,

3. for CW > 0

CS → CW .

6 Numerical Comparison

In two numerical examples we compare the performance of the Non-Standardized and

the Bernoulli test as well as the different methods used to bound the probability of

type I and type II error within the Non-Standardized test. Both examples involve

one covariate, plus the constant. The Standardized test is not included, as, unlike

the others, its bound on the probability of type II error depends on σβj
, and hence

it does not offer direct comparison with the other tests. Comparison with the test

introduced by Schlag (2008b) is not included either, as this test isn’t defined beyond

a single covariate.2

In the extreme example, the covariate only takes two different values and our tests

reduce to finding significant difference between two means. In the normal example,

the covariate is distributed according to the quantiles of the normal distribution.

2We still point out to the reader interested in working with one covariate that the test introduced

in Schlag (2008b) performs better than the tests included in the table for small samples.
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6.1 The Extreme Example

In the extreme example, the first covariate is constant (Xi1 = 1 for every i), while

the second covariate takes only the values −1 and 1: Xi2 = 1 for i ≤ h and Xi2 = −1

for i > h for some 1 ≤ h ≤ n/2. The value of h characterizes the balancedness of

the sample, the sample is perfectly balanced for h = n/2, and gets more and more

unbalanced as h gets closer to 1. The bound on the outcomes of Yi, given by Yi ∈ [0, 1],

constrains the values of β2 to belong to [−1/2, 1/2] .

We wish to test H0 : β2 ≤ 0 against H1 : β2 > 0. Since H0 can be rewritten

H0 : 1
h

∑h
i=1EYi ≤ 1

n−h

∑n
i=h+1EYi, our problem is equivalent to testing the difference

of means of two populations.

An easy computation shows that, subject to X ′τ 2 = e2, the minimizer of ‖τ 2‖ is

given by

τ i2 =
1

2h
if i ≤ h, τ i2 = − 1

2(n− h)
if i > h.

‖τ 2‖∞ has a continuum of minimizers, including the above choice of τ 2 and the

solution given in Subsection 4.3. The corresponding norm values are

‖τ 2‖2 =
n

4h(n− h)
and ‖τ 2‖∞ =

1

2h
.

For the Bernoulli test it turns out best in this example to use the minimizer of ‖τ 2‖
and to choose p̄ = ph = 1 − h/n.

Computation of σ̄βj
shows, for β2 ≤ n/ (4 (n− h)), which is the case in the nu-

merics we consider, that

σ̄2
βj

= β2

∑

i

τ 2
i2Xi2(1 − β2Xi2) +

(‖τ 2‖2 − 2β2

∑

i τ
2
i2Xi2)

2

4 ‖τ 2‖2

=
1

16

n

h(n− h)
− β2

2

n
=

1

4
‖τ 2‖2 − β2

2

n
,

Hence, the same τ 2 minimizes ‖τ 2‖, σ̄β2
, σ̄0,β2

and ‖τ 2‖∞, and hence minimizes the

bound on the probability of type II error of the Non-Standardized test as given by (8).

Let t̄C be the value of t̄ derived using Cantelli’s inequality, so ϕC(σ̄0,βj
, t̄) = α.

Similarly, let t̄Y , t̄H and t̄BE be smallest values of t̄ such that the bounds derived

using Bhattacharyya’s, Hoeffding’s and Berry-Esseen’s inequality are less or equal

to α. Following Section 3.3, the Non-Standardized test rejects the null hypothesis

when β̂j ≥ β̄j + t̄N where t̄N = min {t̄C , t̄Y , t̄H , t̄BE} .
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As stated in Section 3.5, the bound based on Hoeffding’s inequality is superior

to that based on Cantelli’s inequality, i.e., t̄H < t̄C , when α < 0.285. The bound

based on Bhattacharyya’s inequality can be superior to that based on Hoeffding’s

inequality. This is the case, for instance, when α = 0.1, n ≥ 45 and h = n/2.

However, for α = 0.05, as assumed in the following tables, we do not encounter such

a case. For α = 0.05 and α = 0.01, and n ≤ 2 · 106, we find that the Berry-Esseen

inequality gives higher rejection thresholds than Hoeffding’s inequality, i.e., tH < tBE .

In our tables below, as α = 0.05, t̄N = t̄H , the cutoff of the Non-Standardized test is

determined by Hoeffding’s inequality.

In the range of values we use, we find that

σ̄2
βj
>

(

βj − β̄j − t̄N
)2 ‖τ j‖∞

‖τ j‖∞ + 2
(

βj − β̄j − t̄N
)

which means that, when deriving the upper bound on type II error probability, only

the second part of the definition of ϕY in Proposition 2 applies.

Tables 1 and 2 summarize our numerical results. Each row refers to a different

specification of the data as identified by the sample size n (first column) and the value

of h (second column). The cutoff t̄N (equal to t̄H) used in the Non-Standardized test

is shown in the third column. The fourth column expresses k̄b, the cutoff in Bernoulli

test, in the form k̄B/n− p̄ which is a natural measure of how much evidence is needed

beyond what is expected in order to reject the null hypothesis.

The fifth column specifies the value of β2 guaranteed to provide type II error

probabilities below the values shown in the remaining columns. In the first table the

value of β2 is chosen so that the best bound on the probability of type II error among

our tests equals 0.5. In the second table we compare the tests in terms of their ability

to guarantee type II error to be below 0.2, and twice, for n = 500 and h = 100, 250,

also in terms of type II error below 0.05.

The last 5 columns show the bounds on the probabilities of type II errors obtained

using each of the respective inequalities of Cantelli (C), Bhattacharyya (Y), Hoeffding

(H) and Berry-Esseen (BE) in the Non-Standardized test, and in the Bernoulli test

(B). The bound on the probability of type II error of the Non-Standardized test given

the value of β2 in the fifth column is the minimal value of the entries in columns “C”,

“Y”, “H”, and “BE”.
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n h t̄N k̄B/n− p̄ β2 C Y H BE B

40 20 0.194 0.225 0.198 0.997 1 0.999 1 0.5

40 10 0.225 0.175 0.301 0.5 1 0.695 0.803 0.538

100 50 0.122 0.11 0.127 0.992 1 0.996 1 0.5

100 25 0.141 0.11 0.196 0.5 1 0.642 0.653 0.586

500 250 0.0547 0.052 0.057 0.989 1 0.995 0.762 0.5

500 200 0.0559 0.052 0.0713 0.682 1 0.796 0.552 0.5

500 150 0.0597 0.048 0.0814 0.552 1 0.673 0.5 0.566

500 100 0.0684 0.042 0.096 0.5 1 0.613 0.507 0.893

5000 2500 0.0173 0.0154 0.0181 · 10−2 0.989 1 0.994 0.637 0.5

2 · 106 106 8.66 · 10−4 7.7 · 10−4 9 · 10−4 0.989 1 0.994 0.502 0.5

Table 1: Comparison of methods in the extreme example for maximal type II error

probabilities of 0.5.

We make some observations given these two tables. Overall, each test and each

bound has its own region where it adds value to making inference about β2.

1. Our tests perform well in small samples. The bound on the probability of type

II error of the Bernoulli test is below 0.5 when n = 40 and h = 20 for β2 ≥ 0.198,

the bound on the probability of type II error of the Non-Standardized test is

below 0.5 when n = 100 and h = 25 for β2 ≥ 0.196.

2. The Bernoulli test performs best when the sample is balanced, so when h = n/2.

This finding is intuitive. The Bernoulli test relies on rescaling variables nτ i2Yi

into an interval of width n ‖τ 2‖∞ . If |τ i2| is small then the information contained

in Yi is diluted. When h = n/2 then |τ 2i| is independent of i so this dilution

does not occur. Once the data has been transformed into 0’s or 1’s, it is as if

we are comparing the number of successes (occurrences of Wi = 1) between the

two samples {Wi, i ≤ n/2} to {Wi, i > n/2} . The Bernoulli test does this very

effectively as it relies on the binomial test, its only downside is that the level of

the binomial test is chosen to be θα to then be able to derive a test with level

α that is nonrandomized. However, despite this adjustment, n = 2 · 106 is not

large enough for it to be outperformed by the Non-Standardized test.
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n h t̄N k̄B/n− 1/2 β2 C Y H BE B

40 20 0.194 0.2 0.243 0.659 1 0.821 0.763 0.2

100 50 0.122 0.12 0.159 0.631 1 0.769 0.627 0.2

100 25 0.141 0.1 0.233 0.247 0.2 0.28 0.418 0.3

500 250 0.0547 0.046 0.072 0.621 1 0.741 0.276 0.2

500 250 0.0547 0.044 0.0872 0.316 0.27 0.349 0.265 0.05

500 200 0.0559 0.046 0.0869 0.344 0.314 0.396 0.311 0.2

500 150 0.0597 0.046 0.0998 0.264 0.2 0.26 0.266 0.284

500 100 0.0684 0.038 0.115 0.261 0.2 0.254 0.3 0.443

500 100 0.0684 0.038 0.137 0.137 0.0527 0.05 0.169 0.199

5000 2500 0.0173 0.0145 0.0228 0.621 1 0.737 0.371 0.2

2 · 106 106 8.7 · 10−4 8. 2 · 10−4 1.17 · 10−3 0.621 1 0.737 0.255 0.2

Table 2: Comparison of methods in the extreme example for maximal type II error

probabilities of 0.2 and 0.05.

3. The Non-Standardized test outperforms the Bernoulli test when the sample is

unbalanced, e.g. when n = 40 and h = 10. In this case, as |τ i2| is very different

depending on whether i ≤ h or i > h, too much information on Yi is lost in the

Bernoulli test due to rescaling ofWi for i > h. For small samples, the probability

of type II error of the Non-Standardized test is guaranteed to be below 0.5

by using Cantelli’s inequality and to be below 0.2 by using Bhattacharyya’s

inequality. Hoeffding’s inequality is more valuable for bounding the probability

of type II error when concerned with large deviations, such as when ensuring

the probability of type II error below 0.05 when n = 500 and h = 100. The

Berry-Esseen inequality is valuable for guaranteeing the probability of type II

error below 0.5 in larger samples when the sample is not too balanced nor too

unbalanced, e.g. when n = 500 and h = 150.

6.2 The Normal Example

In the extreme example, the covariate takes only two values. We now study an-

other example, in which the distribution of the covariate approximates the normal
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distribution.

We let Xi1 = 1 for every i, and Xi2 = φ−1
(

i
n+1

)

for i = 1, ..., n. As Yi ∈ [0, 1] for

all i, β2 ≤ 1/ (2Xn2) . The minimum of ‖τ 2‖2 subject to X ′τ 2 = e2 equals

1
∑

k X
2
k2

,

it is minimized when

τ i2 =
Xi2

∑

k X
2
k2

.

The minimum of ‖τ 2‖∞ subject to X ′τ 2 = e2 is equal to

1

2
∑n

j=n/2+1Xj2
,

where the unique minimizer satisfies |τ i2| = ‖τ 2‖∞ for all i.

In this example we find numerically that the Bernoulli test performs better in

terms of the bound on the type II error probability when one chooses τ j equal to the

minimizer of ‖τ 2‖∞, which means that d is unique and pβ̄j
= 1/2, instead of choosing

τ j equal to the minimizer of ‖τ 2‖ where pβ̄j
can be chosen much larger. The reason

seems to be that the value of ‖τ 2‖∞ is more than double in the latter case than in

the former case.

Analytic computation shows that σ̄βj
is given by equation (16) in Lemma 8. Unlike

in the extreme example, σ̄βj
is strictly smaller than the bound presented in Lemma

6. For instance, when n = 60 then σ̄2
βj

= 0.0047−4.2×10−2β2
2 while the bound given

in Lemma 6 equals 0.0047− 1.67 × 10−2β2
2. For our calculations below the difference

between these two bounds plays less of a role as the sample gets larger. For the value

of β2 used in the table below, when n = 500 then σ̄2
βj

= 4.8 · 10−4 while the bound

from Lemma 6 is 5.1 · 10−4. Hence, relying on Lemma 6 to construct the tests would

lead to a slightly less powerful test than relying on the exact value as we do.

As in the extreme example, given α = 0.05, t̄N = t̄H , the cutoff of the Non-

Standardized test is determined by the bound derived using Hoeffding’s inequality.

We find that the bound on the probability of a type II error derived using the Berry-

Esseen inequality is sharper when τ 2 is chosen as in the OLS method as compared to

when it minimizes ‖τ 2‖∞.

We summarize our results in Tables 3 and 4.

The Non-Standardized test is best for guaranteeing type II error below 0.2 in small

samples and for guaranteeing it to be below 0.5 in large samples. In these cases too
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n t̄N k̄B/n− p̄ β2 C Y H BE B

60 0.168 0.17 0.212 0.587 1 0.811 0.912 0.5

100 0.127 0.12 0.162 0.622 1 0.798 0.851 0.5

500 0.0553 0.054 0.0711 0.659 1 0.784 0.695 0.5

4000 0.0194 0.016 0.0253 0.637 1 0.754 0.524 0.5

6000 0.0158 0.013 0.0207 0.637 1 0.753 0.5 0.5

8000 0.0137 0.012 0.0177 0.661 1 0.774 0.5 0.516

Table 3: Comparison of methods in the normal example for maximal type II error

probabilities of 0.5.

n t̄N k̄B/n− p̄ β2 C Y H BE B

60 0.168 0.15 0.253 0.217 0.2 0.465 0.622 0.264

100 0.127 0.12 0.201 0.232 0.2 0.367 0.526 0.218

500 0.0553 0.054 0.0908 0.269 0.222 0.292 0.376 0.2

500 0.0553 0.046 0.11 0.14 0.0584 0.0539 0.221 0.05

4000 0.0194 0.016 0.0261 0.28 0.22 0.28 0.255 0.2

6000 0.0158 0.013 0.0261 0.28 0.218 0.28 0.237 0.2

Table 4: Comparison of methods in the normal example for maximal type II error

probabilities of 0.2 and 0.05.

much information is lost due to the rescaling of variables within the Bernoulli test.

Otherwise the Bernoulli test performs best.

7 Conclusion

The question of testing and building confidence intervals for parameters of a linear

regression in the presence of heteroskedasticity is a long standing one in Economet-

rics. White (1980) introduced an asymptotic solution to this problem. This paper

introduces several finite sample methods that are exact in the sense that they do not

rely on assumptions on the noise terms beyond independence.

The tests rely on a known bound on range the dependent variable. Such bounds
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are known in most practical cases, and as shown by Bahadur and Savage (1956),

no finite sample exact methods exist if this assumption is relaxed. Until now, one

had to apply asymptotic solutions in the analysis of finite sample data, without any

control of the rate of convergence of the finite sample test statistics distribution to

the asymptotic one. Note also that, in the fixed regressor case, White’s asymptotic

approach requires a bound on the range of the covariates, and the rate of convergence

of the finite test to the asymptotic test necessarily relies on an assumption such as a

bound on the range of the dependent variable, or, alternatively, its variance.

The tests are easy to implement. In some cases they contain free parameters that

require fine tuning, in other cases we can directly present the formula, such as when

the cutoff under the Non-Standardized test is derived using Hoeffding’s inequality

(see (9)). Similarly, the proofs are straightforward. In most cases their construction

builds on existing inequalities.

The general methods we follow to construct these tests can be extended. For

instance, improvements on the tail inequalities presented in the Non-Standardized

naturally lead to improvements the of Non-Standardized test, and, similarly, im-

provements on the Shiganov bound of the Berry-Esseen inequality would improve the

power of the Non-Standardized and Standardized tests.

Evaluating the type II error probabilities numerically, we nd that our tests perform

well even in small sample sizes (n=40,60), for which there is a strong doubt on the

reliability of asymptotic methods.
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A Upper Bound on σβj

Lemma 8 (i)

σ2
βj

≤ 1

4
‖τ j‖2 − 1

# {i : τ ij 6= 0}

(

βj −
1

2

∑

i

τ ij

)2

,

(ii) if Xi1 = 1 for all i and m = j = 2 then

σ2
β2

≤ β2

∑

i

τ 2
i2Xi2 (1 − β2Xi2) +

(‖τ 2‖2 − 2β2

∑

i τ
2
i2Xi2)

2

4 ‖τ 2‖2 (16)

where this bound is tight when
∣

∣

∣

∣

β2

(

Xi2 −
∑

k τ
2
k2Xk2

‖τ 2‖2

)∣

∣

∣

∣

≤ 1

2
for all i.

Proof of Lemma 8. It is a simple excersize to show that

1

4
‖τ j‖2 − 1

n1

(

βj −
1

2

∑

i

τ ij

)2

= max
µ∈Rn

{

∑

i

τ 2
ijµi (1 − µi) :

∑

i

τ ijµi = βj

}
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where the maximum is attained when

µi =
1

2
+

1

nτ ij

(

βj −
1

2

∑

i

τ ij

)

for τ ij 6= 0.

A better, possibly strictly lower bound is obtained if the constraint µ ∈ [0, 1]n is

included in the above maximization.

For the best bound, using the fact that V arYi ≤ EYiE (1 − Yi), one needs to solve

max
z∈Rm

{

∑

i

τ 2
ijXiz (1 −Xiz) : zj = βj , Xz ∈ [0, 1]n

}

.

For the special case where Xi1 = 1 for all i and m = j = 2 we obtain, when

ignoring the constraint β1 + β2Xi2 ∈ [0, 1] for all i,

σ2
β2

≤ β2

∑

i

τ 2
i2Xi2 (1 − β2Xi2) +

(

‖τ 2‖2 − 2β2

∑

i τ
2
i2Xi2

)2

4 ‖τ 2‖2 ,

the value of β1 used to attain this maximum is given by

β1 =
1

2
− β2

∑

i τ
2
i2Xi2

‖τ 2‖2 .

Hence, the above bound is tight if

1

2
− β2

∑

k τ
2
k2Xk2

‖τ 2‖2 + β2Xi2 ∈ [0, 1] for all i.

B Proof of Lemma 7

Let S0 =
∑

i τ
2
ij (Yi −Xiβ)2.

Lemma 9

∣

∣

∣
s2

βj
− S0

∣

∣

∣
≤ c0 ·

∥

∥

∥
β̂ − β

∥

∥

∥

∞
where

c0 := max
Y ∈[0,1]n

∑

i

τ 2
ij

(∣

∣Xiτ
TY
∣

∣+ 2
)

‖Xi‖1 .
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Proof. Using the quadratic formula (y2 − x2) = (y + x) (y − x) we derive

∣

∣

∣
s2

βj
− S0

∣

∣

∣
=

∣

∣

∣

∣

∣

∑

i

τ 2
ij

(

(

Xiβ̂
)2

− (Xiβ)2 − 2Yie
t
iX
(

β̂ − β
)

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

i

τ 2
ij

(

Xi

(

β̂ + β
)

− 2Yi

)

Xi

(

β̂ − β
)

∣

∣

∣

∣

∣

≤
∥

∥

∥
β̂ − β

∥

∥

∥

∞
·
∣

∣

∣

∣

∣

n
∑

i,k=1

τ 2
ij

(

Xi

(

β̂ + β
)

− 2Yi

)

Xik

∣

∣

∣

∣

∣

=
∥

∥

∥
β̂ − β

∥

∥

∥

∞
·
∣

∣

∣

∣

∣

∑

i

τ 2
ij

(

Xi

(

β̂ + β
)

− 2Yi

)

m
∑

k=1

Xik

∣

∣

∣

∣

∣

≤
∥

∥

∥
β̂ − β

∥

∥

∥

∞
·
∑

i

τ 2
ij

(∣

∣

∣
Xiβ̂

∣

∣

∣
+ |Yi| + |Xiβ − Yi|

)

‖Xi‖1

≤
∥

∥

∥
β̂ − β

∥

∥

∥

∞
·
∑

i

τ 2
ij

(∣

∣

∣
Xiβ̂

∣

∣

∣
+ 2
)

‖Xi‖1 .

Lemma 10 P
(∣

∣

∣
β̂k − βk

∣

∣

∣
≥ a
)

≤ 2 exp
(

−2 a2

‖τk‖2

)

=: c1 (a).

This follows directly from Hoeffding’s inequality (5). The only difference to our

analysis is Section 3.1.3 is here the factor 2 which is due to the fact that the inequality

we approximate above is two-sided.

Lemma 11 P
(

σ2
βj

− S0 ≥ a
)

≤ exp
(

−2 a2

P

i τ4

ij

)

=: c2 (a) .

Again this follows again directly from (5). In contrast to Lemma 10 we do not

need the factor 2 as the approximation of the error is one-sided.

Proof of Lemma 7. Let λ ∈ [0, 1]. Following Lemmata (9) and (10) we obtain

P
(∣

∣

∣
s2

βj
− S0

∣

∣

∣
≥ λa2

)

≤ P

(

∥

∥

∥
β̂ − β

∥

∥

∥

∞
≥ λ

a2

c0

)

≤ c1

(

λ
a2

c0

)

.

Following Lemma (11),

P
(

σ2
βj

− S0 ≥ (1 − λ) a2
)

≤ c2
(

(1 − λ) a2
)

.

Since

{

σ2
βj

− s2
βj

≥ a2
}

⊂
{∣

∣

∣
S0 − s2

βj

∣

∣

∣
≥ λa2

}

∪
{

σ2
βj

− S0 ≥ (1 − λ) a2
}
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we obtain

P
(

σ2
βj

− s2
βj

≥ a2
)

≤ P
(∣

∣

∣
S0 − s2

βj

∣

∣

∣
≥ λa2

)

+ P
(

σ2
βj

− S0 ≥ (1 − λ) a2
)

≤ c1

(

λ
a2

c0

)

+ c2
(

(1 − λ) a2
)

.

C Proof of Theorem 1

Lemma 12 c0 ≤ K1

n
, with K1 = m3K2(m2K2 + 2).

Proof.

c0 = max
Y ∈[0,1]n

∑

i

τ 2
ij

(∣

∣

∣
Xi (X

′X)
−1
X ′Y

∣

∣

∣
+ 2
)

‖Xi‖1

≤
(

∑

i

τ 2
ij

)(∥

∥

∥

∥

∥

X

(

X ′X

n

)−1

X ′

∥

∥

∥

∥

∥

∞

+ 2

)

m

≤ m2K2

n

(

m2K + 2
)

m.

Lemma 13 c3(an
− 1

20 ) ≤ 1/n2 for n large enough, R(w) → 0, σβj
/w → ∞, sβj

/w →
∞ a.s. as n→ ∞.

Proof. First, c3(an
− 1

20 ):

c3(an
− 1

20 ) ≤ c1(
a2n−.1

2c0
) + c2(

a2n−.1

2
)

≤ 2 exp(− a4n−.2

2c20 ‖τ ∗j‖2 ) + exp(− a4n−.2

2
∑

i τ
4
ij

)

≤ 2 exp(− a4n2.8

2K2
1K

2
) + exp(−a

4n2.8

2K4
).

It follows straight from the definition of R(w) that

R(w) ≤ K3

n2w3
.
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Letting Ω = diag(Eε2i ),

σ2
βj

= e′j(X
′X)−1XΩX ′(X ′X)−1ej

=
1

n
e′j

(

X ′X

n

)−1

V̄

(

X ′X

n

)−1

ej

=
1

n

∥

∥

∥

∥

∥

V̄
1

2

(

X ′X

n

)−1

ej

∥

∥

∥

∥

∥

2

.

Since V̄
1

2

(

X′X
n

)−1
has bounded terms and its determinant is bounded away from 0,

nσ2
βj

is bounded away from 0, which implies that σβj
/w → ∞.

Finally, s2
βj
/w2 ≥ σ2

βj
/w2 − |σ2

βj
− s2

βj
|/w2, and c3(wn

− 1

20 ) = c3(an
− 1

20 ) ≤ 1/n2

implies that |σ2
βj

− s2
βj
|/w2 → 0 a.s., hence s2

βj
/w2 → ∞ a.s..

Proof of Theorem 1. Point (1) is a direct consequence of b1 → 0, a1 ≪ sβj

a.s. (cf. Lemma 13). For point (2), it is enough to see that c3(a1)φ(b1/w)+AR(w) → 0,

which is straightforward from Lemma 13. For (3), since c3(ā), AR(w) → 0, b2/w →
∞, it is enough to establish that ū→ φ−1(1 − α) +

β̄j−βj

σβj

:

ū = t̄S

√

√

√

√

σ2
βj

+ 3w2

σ2
βj

+ w2
+

2b1
√

σ2
βj

+ w2
+
β̄j − βj

σβj

σβj
√

σ2
βj

+ w2

and the result follows since t̄S → φ−1(1 − α), b1, w ≪ σβj
,

β̄j−βj

σβj

constant.


